PolicyLint: Investigating Internal Privacy Policy Contradictions on Google Play

Abstract

Privacy policies are the primary mechanism by which mobile
applications inform users about data collection and sharing
practices. These policies are long, complex legal documents,
and as a result it is difficult for users, regulators, or application
analysis tools to identify at scale objectionable or problematic
practices. In this paper, we present PolicyLint, a privacy pol-
icy analysis tool inspired by lightweight static analysis tools
like 1int. PolicyLint automatically generates ontologies cap-
turing semantic relationships between data types and entities
from a large corpus of privacy policies. It then uses sentence-
level natural language processing to capture both positive and
negative statements of data collection and sharing. We use
PolicyLint to analyze 11,430 apps for contradictions in their
sharing and collection statements. In this novel study, we find
2,060 policies that are potentially contradictory. We manually
verify 510 contradictions, finding many concerning trends,
including the use of misleading presentation, attempted re-
definition of common understandings of terms, conflicts in
regulatory definitions (e.g., US and EU), and “laundering” of
tracking information facilitated by sharing or collecting data
that can derive sensitive information. In so doing, PolicyLint
significantly advances automated policy analysis.

1 Introduction

Mobile apps collect, manage, and transmit some of the most
sensitive information that exists about users — including pri-
vate communications, fine-grained location, and even health
measurements. Prior work has demonstrated that apps reg-
ularly transmit this information to first or third parties [].
This data collection and sharing is often considered (legally)
acceptable if it is described in the privacy policy for the appli-
cation. These policies are sophisticated legal documents that
are typically long, vague, and difficult for novices, experts,
and algorithms to interpret. Accordingly, it is difficult to de-
termine if app developers adhere to privacy policies, to help
app stores and other analysts identify privacy violations, or

help end users choose more-privacy-friendly apps.

Recent work has begun studying privacy policies and mo-
bile apps to address these questions [22, 25, 28, 24]. However,
these efforts have suffered from three limitations in policy
language analysis. First, privacy policies referto information
at different semantic granularities. Prior work has tackled
this issue by crowdsourcing data object ontologies [22, 24],'
but such crowdsourced information is not complete, accurate,
or easily collected. Second, prior approaches have struggled
to accurately detect negative statements, relying on bi-grams
(e.g., “not share”) [28] or detecting only verb modifiers [25]
while neglecting the more-complicated statements (e.g., “will
share X except Y”) that are common in privacy policies. Fi-
nally, mixing positive and negative statements or varying
levels of specificity may lead to intentional or accidental con-
tradictions. This issue has not been studied in the context of
a single policy, though one project has compared app policies
with the policies of their included libraries [25].

In this paper, we address the preceding limitations by pre-
senting PolicyLint, a tool designed to automatically analyze
the content of privacy policies. PolicyLint is inspired by
other security 1int tools [7, 6, 8, 9, 5, 14], which analyze
code for indicators of potential bugs or other programming
errors. Like any static approach, not every lint finding is
necessarily an error. For example, potential bug conditions
could be mitigated by an external control or other context
that the tool cannot verify. In many cases, only a human can
verify the outputs of a 1int finding. In the case of PolicyLint,
we note that privacy policies are complex legal documents
that may be intentially vague, ambiguous, or even deliber-
ately misleading even for human interpretation. Despite these
fundamental challenges, PolicyLint provides a mechanism
to condense a long and compicated policy into a small set
of candidate issues that would interest a human or algorith-
mic analysis. We note that a wide body of prior research
has analyzed the content of privacy policies for aspects like
coverage and clarity [1, 11, 10]. While PolicyLint could cer-

Ontologies are graph data structures that capture relations among entities.
For example,“personal information” subsumes “your email address”.

tainly assist in answering similar questions, in this paper, we
focus on a challenging and important, yet little-studied ques-
tion: “do privacy policies contain contradictions?” Such
contradictions would make policies unclear, confusing both
humans and any automated system that relied on interpreting
the policy. PolicyLint is the first tool have the sophistica-
tion necessary to reason about both negative sentiments and
statements covering varying levels of specificity, which is
necessary for uncovering contradictions.
This paper makes the following contributions:

e Automated generation of ontologies from privacy
policies. PolicyLint uses an expanded set of Hearst pat-
terns [?] to extract ontologies for both data objects and
entities from a large corpus of privacy policies (e.g., “W
such as X, Y, and Z”). PolicyLint is more comprehensive
and scalable than crowdsourcing.

e Automated sentence-level extraction of privacy prac-
tices PolicyLint uses sentence-level NLP and leverages
parts-of-speech and type-dependency information to cap-
ture data collection and sharing as a four-tuple: (actor,
action, data object, entity). For example, “We [actor]
share [action] personal information [data object] with
advertisers [entity].” Sentence-level NLP is critically
important for the correct identification of negative state-
ments. We also show that prior attempts at analyzing
negation would fail on 28.2% of policies.

e Automated analysis of contradictions in privacy
practices We formally model 9 types of contradictions
that result from semantic relationships between terms,
providing an algorithmic method to detect contradictory
policy statements. In a study of 11,430 privacy poli-
cies from mobile apps, we are the first to find that such
contradictions are rampant, affecting 18% of policies.

e Manual analysis of contradictions to identify trends
The high rate of policy contradictions is surprising. We
manually reviewed 510 contradictions across 260 poli-
cies, finding that many contradictions are indeed indi-
cators of misleading or problematic practices. These
include making broad claims to protect personal infor-
mation early in a policy, yet later carving out exceptions
for data that authors attempt to redefine as not personal,
that could be used to derive sensitive information (e.g.,
IP addresses and location), or that are considered sensi-
tive by some regulators but not others.

This paper is organized as follows: Section 2 describes
PolicyLint’s design. Section 3 automatically derives ontolo-
gies describing data types and data-handling entities. Sec-
tion 4 extracts discrete policy statements from privacy poli-
cies. Section 5 formally defines privacy-policy contradictions.
Section 6 reports on our empirical study using PolicyLint.
Section 7 describes related work. Section 8 concludes.

Ontologies

Privacy Ontology
Policies Generation

App Info ‘L
™ Policy
Privacy > Policy Statements Contradiction

Policy Extraction p = (actor; action, Analysis

data object, entity)

Figure 1: Overview of PolicyLint

2 PolicyLint

PolicyLint seeks to identify contradictions within individual
privacy policies for software. PolicyLint provides privacy
warnings based on contradictory sharing and collects state-
ments within policies, but similar to lint tools for software,
these warnings require manual verification. PolicyLint iden-
tifies “candidate contradictions” within policies. A candi-
date contradiction is a pair of contradicting policy statements
when considered in the most conservative interpretation (i.e.,
context-free). Candidate contradictions that are validated by
analysts are termed as “validated contradictions.” Manual
verification is required due to the fundamental problems of
ambiguity when interpreting the meaning of natural language
sentences (i.e., multiple interpretations of the same sentence).

For example, consider the privacy policy for a popular
recipe application (com.omniluxtrade.allrecipes). One part
of the policy states “We do not collect personally identifiable
information from our users.” It is clear from this sentence
that the application does not collect any personal information
from users. However, later the policy states “We may collect
your email address in order to send information, respond to
inquiries, and other requests or questions.” Such part is a clear
contradiction to the earlier part, as email address is consider
personal information. As discussed in detail in Section 6, the
cause for this underlying contradiction is that the developer
does not consider email address as personal information.

To our knowledge, our work is the first to consider con-
tradictions within privacy policies. While PolicyLint is not
the first NLP tool to analyze privacy policies, identifying
contradictions requires addressing two broad challenges.

e References to information are expressed at different se-
mantic levels. Prior work [22, 24] uses ontologies to cap-
ture subsumptive relationships between terms; however,
such ontologies are crowdsourced, leaving concerns of
comprehensiveness and scalability.

e Privacy policies include negative sharing and collec-
tion statements. Most prior work operates at paragraph
level and cannot capture negative sharing statements.
Prior work that does capture negative statements [28, 25]

misses complex statements (e.g., “will share personal
information except your email address).

We tackle these challenges using two key insights.

Sentence structure informs semantics: Sharing and collec-
tion statements generally follow a learnable set of templates.
PolicyLint uses these templates to extract a four tuple from
such statements: (actor, action, data object, entity). For ex-
ample, “We (actor) share (action) personal information (data
object) with advertisers (entity).” The sentence structure also
provides greater insight into more complex negative sharing.
For example, ‘“We share personal information except your
email address with advertisers.” PolicyLint extracts such se-
mantics from policy statements by building on top of existing
parts-of-speech and dependency parsers.
Privacy policies encode ontologies: Due to the legal nature
of privacy policies, general terms are often defined in terms of
examples or their constituent parts. While each policy might
not define semantic relationships for all terms used in the pol-
icy, those relationships should exist in some other policies in
our dataset. By processing a large number of privacy policies,
PolicyLint automatically generates an ontology specific to
policies (one for data objects and one for entities). PolicyLint
extracts term definitions using Hearst patterns [12], which we
have extended for our domain.

Figure 1 depicts the data flow that comprises PolicyLint.
There are three main components of PolicyLint: ontology
generation, policy extraction, and contradiction analysis. The
following sections describe the design of these components
in detail. Readers interested in policy-preprocessing consider-
ations can refer to Appendix A.

3 Ontology Generation

The goal of the ontology generation is to define subsump-
tive (“is-a”) relationships between terms in privacy policies
to allow reasoning over different granularities of language.
PolicyLint operates on the intuition that subsumptive relation-
ships are often embedded within the privacy policy text, e.g.,
an example of the types of data considered to be a specific
class of information. The following example identifies that
demographic information subsumes age and gender.

Example 1. We may share demographic information, such
as your age and gender, with advertisers.

PolicyLint uses such sentences to automatically discover sub-
sumptive relationships across a large set of privacy policies. It
focuses on data objects and the entities receiving data objects.

PolicyLint uses a semi-automated and data-driven approach
for ontology generation. It breaks ontology generation into
three main parts. First, PolicyLint performs domain adapta-
tion of an existing model of statistical-based named entity
recognition (NER). NER is used to label data objects and en-
tities within sentences, capturing not only terms, but also sur-
rounding context in the sentence. Second, PolicyLint learns

subsumptive relations for labeled data objects and entities
by using a set of 11 lexicosyntactic patterns with enforced
named-entity label constraints. Third, PolicyLint takes a set
of seed words as input and generates data-object/entity on-
tologies using the subsumptive relations discovered in the
prior step. It iteratively adds relations to the ontology until a
fixed point is reached. We now describe this process in detail.

3.1 NER Domain Adaptation

To identify subsumptive relations for data objects and entities,
PolicyLint must identify which sentence tokens represent
a data object or entity. For Example 1, we seek to iden-
tify “demographic information,” “age,” and “gender” as data
objects, and “we” and “advertisers” as entities. PolicyLint
uses a statistical-based approach of named-entitity recogni-
tion (NER) to label data objects and entities within sentences.
Prior research [22, 24, 25, 28] proposed keyphrase-based ap-
proaches for identifying data objects. However, key-phrase
approaches are less versatile in practice: they cannot handle
term ambiguity and variability, and they can identify only
terms defined in their pre-defined list. For example, the term
“internet service provider” can be both a data object and an
entity, which cannot be differentiated by keyphrase-based
approaches. In contrast, statistical-based NER both resolves
ambiguity and discovers “unseen” terms.

Unfortunately, existing NER models are not trained for
our problem domain (data objects and collective terms that
describe entities, e.g., “advertisers”). Training an NER model
from scratch is a time-consuming process due to the large
amount of training data required to achieve a reasonable
performance. Therefore, PolicyLint starts from an existing
NER model and updates it using annotated examples of train-
ing data from our problem domain. Specifically, PolicyLint
adopts Spacy’s NER engine [13], which uses deep convolu-
tional neural networks. We adapt the en_core_web_lg model
to the domain of privacy policies.

To perform domain adaptation, we gather 500 sentences as
training data. Our training data is selected as follows. First,
we randomly select 50 unique sentences from our policy
dataset. Second, for each of the 9 lexico-syntactic patterns
described in Section 3.2, we randomly select 50 sentences
that contain the pattern (450 in total). We run the existing
NER model on the training sentences to prevent the model
from “forgetting” old annotations. We then manually annotate
the sentences with data objects and entities.

When updating the existing NER model, we perform mul-
tiple passes over the annotated training dataset, shuffling at
each epoch, and using minibatch training with a batch size of
4. To perform the domain adaptation, the current model at-
tempts to predict the NER labels for each word in the sentence
and will adjust the synaptic weights in the neural network ac-
cordingly if the prediction does not match the annotations. We
stop making passes over the training data when the loss rate

Table 1: Lexicosyntatic patterns for subsumptive relations
Pattern
Hl | X, suchasY, Y», ..., Y,
H2 | suchX asYy, s, ...Y,
H3 | X [orland} other Y1, Ys, ... Y,
H4 | X, including Yy, Y», ... Y,
HS | X, especially Y1, Y, ... Y,
Cl | X, legliel], Y, V... Y,
C2 | X(Jeglie], Y1, Ya, ... Yy)
C3 | X, forexample, Y1, Y, ... Y,
C4 | X, which may include Y1, Y, ... Y,
* H* = Hearst Pattern; C* = Custom Pattern

begins to converge. We annotate an additional 100 randomly
selected sentences as holdout data for testing the model. Ta-
ble 5 (Appendix C) shows the performance of the NER model
before and after domain adaptation for our holdout dataset.
PolicyLint achieves 82.2% and 86.8% precision for identify-
ing data objects and entities, respectively.

3.2 Subsumptive Relation Extraction

PolicyLint uses a set of 9 lexicosyntactic patterns to discover
subsumptive relations within sentences, as shown in Table 1.
The first five are Hearst Patterns [12], and the last four are
custom deviations based observations of text in privacy poli-
cies. For each pattern, PolicyLint ensures named-entity labels
are consistent across the pattern (i.e., PolicyLint uses Hearst
patterns enforcing constraints on named-entity labels). For
example, Example 1 is recognized by the pattern “X, such as
Y1,Y2,---,Y,” where X is anoun, Y1,Y>,---,Y, is a conjunc-
tive noun phrase, and the NER labels for X and each Y; are all
data objects. Note that PolicyLint merges noun phrases before
applying the lexicosyntactic patterns to ease extraction.

Given the complete set of extracted relations, PolicyLint
normalizes the relations by lemmatizing the text and substitut-
ing terms with their synonym. For example, consider that we
know “blood sugar levels” is a synonym for “blood glucose
level.” Lemmatization turns“blood sugar levels” into “blood
sugar level”, and synonym substituion turns it into “blood
glucose level”. To identify synonyms, we output the non-
terminal (i.e., X value of the Hearst patterns) data objects
and entities in the subsumptive relations. We manually scan
through the list and mark synonyms. We repeat the process
with the terminal nodes that are included after constructing
the ontology. We then dump out all of the data objects and
entities labeled from all the policies and sort the terms by
frequency. We mark synonyms for the most frequent terms by
keyword searching for related terms based on sub-strings and
domain knowledge. For example, if “location” appears as a
frequent term, we output all data objects that contain the word
“location”, read through the list, and mark synonyms (e.g.,
“geographic location”). Next, we use our domain knowledge
to identify that “latitude and longitude” is a synonym of “lo-
cation”, output out the terms that contain those words, and
manually identify synonyms.

3.3 Ontology Construction

PolicyLint generates ontologies by combining the subsump-
tive relations extracted from policies with a set of seed terms
(Table 6, Appendex D). For each ontology, PolicyLint iterates
through the seeds, selecting relations that contain it. Poli-
cyLint then expands the term list from the relations in that
iteration. PolicyLint continues iterating over the relations un-
til no new relations are added to the ontology. If there exists
any inconsistent relation where X is subsumed under Y and
Y is subsumed under X, PolicyLint uses the relation that has
a higher frequency (i.e., appearing in more privacy policies).
Once a fixed point is reached, PolicyLint ensures that there
is only one root node by creating connections between any
nodes that do not contain inward-edges with the root of the
ontology (i.e., “information” for the data ontology, and “pub-
lic” for the entity ontology). Finally, PolicyLint ensures no
cycles exist in the ontology by identifying simple cycles in
the graph and removing an edge between nodes to break the
cycle. PolicyLint chooses which edge to remove by finding
the edge that appears least frequently in the subsumptive rela-
tions and ensures that the destination node has more than one
in-edge to ensure that a new root node is not created.

4 Policy Statement Extraction

The goal of policy statement extraction is to identify a set
of 4-tuples, (actor, action, data object, entity), as described
in Section 5. PolicyLint processes privacy policy text at
sentence-level granularity to ensure precise modeling of neg-
ative sentiment policy statements (e.g., negated verbs) and
exception clauses. The following example includes both a
negated verb and an exception clause.

Example 2. If you register for our cloud-based services, we
will collect your email address.

PolicyLint extracts policy statements from the privacy pol-
icy text by using patterns of the grammatical structures be-
tween data objects, entities, and verbs that represent sharing
or collection (for brevity we call these SoC verbs). First,
PolicyLint transforms a sentence’s dependency-based parse
tree into a concise format that captures generalizations of the
relations between named-entities (i.e., data objects and enti-
ties) and the SoC verbs in the sentence. We call this sentence
structure a data and entity dependency (DED) tree. Second,
PolicyLint extracts DED trees from positive examples of sen-
tences that describe sharing or collection practices. These
DED trees represent known patterns of sharing and collection
phrases. Finally, PolicyLint uses those patterns to determine
whether “unseen” sentences describe a sharing or collection
practice. If so, PolicyLint extracts policy statements based
on positive matches. The remainder of this section describes
these steps in detail.

4.1 DED Tree Construction

The goal of constructing the data and entity dependency
(DED) trees is to extract a concise representation of the gram-
matical relations between the data objects, entities, and the
verbs that represent sharing or collection (SoC verbs). The
main intuition behind constructing these trees is to allow Pol-
icyLint to infer semantics of the sentence based on the gram-
matical relations between the tokens (i.e., who collects/shares
what with whom). The DED tree for a sentence is derived
from the sentence’s dependency-based parse tree. However,
the DED tree removes nodes and paths that are not relevant
to the data objects, entities, and SoC verbs, and performs a
set of simplifications to generalize the representation. The
transformation for Example 2 is shown in Figure 2.

To construct DED trees, PolicyLint parses a sentence and
using its custom-trained NER model to label data objects and
entities within the sentence (Section 3). PolicyLint merges
noun phrases and iterates over sentence tokens to label SoC
verbs by ensuring the PoS tag of the token is a verb and the
lemma of the verb is in PolicyLint’s manually curated list
of terms (Table 7, Appendex D). PolicyLint also labels the
pronouns, “we,” “I,” “you,” “me,” and “us,” as entities during
this step. PolicyLint then extracts the sentence’s dependency-
based parse tree whose nodes are labeled with the data object,
entity, and SoC verb labels as discussed above.

Negated Verbs: PolicyLint identifies negated verbs by check-
ing for negation modifiers in the dependency-based parse tree.
If the verb is negated, PolicyLint labels the node as negative
sentiment. PolicyLint propagates the negative sentiment to de-
scendent verb nodes in three situations. First, if a descendent
verb is part of a conjunctive verb phrase with the negated verb,
negative sentiment is propagated. For example, “We do not
sell, rent, or trade your personal information.”, means ‘“not
sell,” “not rent,” and “not trade.” Second, if the descendent
verb has an open clausal complement to the negated verb,
negative sentiment is propagated. For example, “We do not re-
quire you to disclose any personal information.” initially has
“require” marked with negative sentiment. Since “disclose” is
an open clausal complement to “require,” it is marked with
negative sentiment. Third, if the descendent verb is an adver-
bial clause modifier to the negated verb, negative sentiment is
propagated. For example, “We do not collect your informa-
tion to share with advertisers.” initially has “collect” marked
with negative sentiment. Since “share” is an adverbial clause
modifier to “collect”, it is marked with negative sentiment.

Exception Clauses: PolicyLint identifies exception clauses
by traversing the parse tree and finding terms that represent

CEINNTS

exceptions to a prior statement: such as “except”, “unless”,
“aside/apart from”, “with the exception of”, “besides”, “with-
out”, and “not including”. For each identified exception
clause, PolicyLint traverses down the parse tree from the ex-
ception clause to identify verb phrases (subject-verb-object)

and noun phrases related to that exception. PolicyLint then

traverses upward from the exception term to identify the near-
est verb node and appends as a node attribute the list of noun
phrases and verb phrases identified in the downward traversal.
In certain cases, the term may not have a subtree. For ex-
ample, the exception term may be a marker that introduces a
subordinate clause. In the sentence, “We will not share your
personal information unless consent is given.”, the term “un-
less” is a marker that introduces the subordinate clause “your
consent is given.” For empty subtrees, PolicyLint attempts
the downward traversal from its parent node.
DED Tree construction: Finally, PolicyLint constructs the
DED tree by computing the paths between labeled nodes on
the dependency-based parse tree, copying labels and attributes
described above. Note that PolicyLint also copies over all
unlabeled subjects and direct objects from the parse tree, as
they are needed to extract the information. PolicyLint further
simplifies the tree by merging conjuncts of SoC verbs into
one node if the coordinating conjunction is “and” or “or.’
For example, “We will not sell, rent, or trade your personal
information.” can be simplified by collapsing “sell,” “rent,”
and “trade” into one node. The resulting node’s label is a
union of all of the tags of the merged verbs (i.e., {share} +
{collect} = {share, collect}. Similarly, PolicyLint repeats the
same process for conjuncts of data objects and entities.
PolicyLint then prunes the DED tree by iterating through
the nodes labeled as verbs in the graph and performing the
following process. First, for a verb node labeled as an SoC
verb, PolicyLint ensures that its subtree contains at least one
other node labeled as an SoC verb, data object, or entity. If
the node’s subtree does not meet this condition, PolicyLint
removes the subtree rooted at the node labeled as an SoC
verb. Second, for verb nodes not labeled as SoC verbs, Poli-
cyLint ensures that at least one SoC verb is contained in its
subtree and that it meets the conditions above for an SoC
verb. Similarly, if these conditions are not met, PolicyLint
also removes the subtree rooted at that non-labeled verb node.
For example, this pruning step causes the subtree rooted at
the verb “register” to be removed in Figure 2.

s

4.2 SoC Sentence Identification

To identify sentences that describe sharing and collection
practices, PolicyLint takes a set of positive examples of sen-
tences as input and then extracts their DED trees to use as
known patterns for sharing and collection phrases. To begin,
we feed PolicyLint a set of 560 example sentences that de-
scribe sharing and collect practices. PolicyLint generates the
DED trees from these sentences and learns 82 unique patterns.
Note that the example sentences are auto-generated from a
set of 16 sentence templates, as described in Appendix B. We
choose to auto-generate the sentences, as manually selecting
a set of sentences with diverse grammatical structures is a
tedious process. Doing so does not adversely impact the ex-
tensibility of PolicyLint, as adding a new pattern is as simple

for our cloud-based services we will
ADP PRON VERB ABP NOUN

if you register

NONE ENTITY NONE NONE ENTITY

collect your email address
PRON VERB VERB
ENTITY NONE COLLECT DATA_OBJECT

:> we collect your email address

NOUN PRON VERB NOUN
ENTITY COLLECT DATA_OBJECT

Figure 2: Transformation of Example 2 from its dependency-based parse tree to its DED tree.

as feeding PolicyLint the new sentence.

PolicyLint iterates sentences of a given privacy policy. If
the sentence contains at least one SoC verb and data object
(labeled by NER), PolicyLint constructs the DED tree. Pol-
icyLint then compares the sentence DED tree to the DED
trees of the known patterns. A pattern is matched if (1) the
sentence DED tree’s label types are equivalent to the pattern
DED tree (e.g., {entity, SoC_verb, data}), and (2) the known
pattern DED tree is a subtree of the sentence DED tree.

For a tree t; to be a subtree of tree 1, (1) the tree structure
must be equivalent, (2) the dependency labels on edges be-
tween nodes must match, and (3) the following three node
conditions must hold. First, for SoC verb nodes to match,
they must have a common lemma. For example, a node with
the lemmas {sell, rent} matches a node with lemma {rent}.
Second, if the node’s part-of-speech is an apposition, the tags,
dependency label, and lemmas must be equal. Third, for all
other nodes, the tags and dependencies must be equal.

On subtree match, PolicyLint records the nodes in the
subtree match and continues the process until either (1) each
pattern is checked, or (2) the entire DED tree has been covered
by prior subtree matches. If at least one subtree match is
found, PolicyLint identifies the sentence as a potential SoC
sentence and begins extracting the policy statement tuple.

4.3 Policy Extraction

The goal of the policy extraction phase is to transform the
DED tree into a (actor, action, data object, entity) tuple for
a CPS (Section 5.1). PolicyLint performs policy extraction
starting with the SoC nodes present in the subtree matches.
If multiple SoC nodes exist in the subtree matches, multiple
CPSes are generated. However, multiple subtree matches
over the same SoC node will only result in the generation
of one CPS. The SoC determines the action (e.g., collect,
not_collect). The sentiment of the action is determined based
on whether the node is labeled with positive or negative senti-
ment, as discussed in Section 4.1.

Actor Extraction: To extract the actor, PolicyLint starts from
the matching SoC verb node. The actor is a labeled entity
chosen from the (1) subject, (2) prepositional object, or (3)
direct object (in that order). However, if the dependency is
xcomp or advcl, PolicyLint prioritizes the direct object and
prepositional object over the subject. If no match is found,

PolicyLint traverses up one level in the DED tree and repeats.
Finally, if no match is found, PolicyLint assumes that the
actor is the implicit first party.

Data Object Extraction: To extract the data objects, Poli-
cyLint starts from the matching SoC verb node. It traverses
down the DED tree to extract all nodes labeled as data objects.
The traversal continues until another SoC verb is reached. If
no data objects are found, and the verb’s subject and direct
object are not labeled as a data object, PolicyLint extracts the
data objects from the nearest ancestor SoC verb.

Entity Extraction: To extract entities, PolicyLint starts from
the matching SoC verb node. It traverses down the DED tree
extracting all nodes labeled as entities that are not actors. The
traversal continues until another SoC verb is reached.
Exception Clauses: PolicyLint considers exception clauses
if the verb is marked with a negative sentiment (e.g., not
collect, not share), creating a cloned policy statement with
the sentiment to change. We do not handle exception clauses
for positive sentiment. For example, “We might also share
personal information without your consent to carry out your
own requests” still shares personal information.

For negative sentiment verbs, there are three cases. First,
if the exception clause’s node attribute contains only data
objects, PolicyLint replaces the data objects of the new policy
with the data objects under the exception clause. For example,
“We will not collect your personal information except for your
name and phone number.” produces policies: (we, not_collect,
personal information, NULL), (we, collect, [name, phone
number], NULL). Second, if all noun phrases have an entity
label, PolicyLint replaces the entities of the new policies with
the entities under the exception attribute. For example, “We
do not share your demographics with advertisers except for
AdMob.” produces policies: (we, not_share, demographics,
advertisers) and (we, share, demographics, AdMob). Third, if
the labels are not data objects or entities, PolicyLint removes
the initial policy statement. For example, “We will not collect
your personal information without your consent.” produces
the policy: (we, collect, personal information, NULL).
Policy Simplification: PolicyLint may extract multiple ac-
tors, actions, data objects, and entities when creating policy
statements. These complex tuples are expanded. For exam-
ple, ([we], [share,sell], [location, age], [Google, Facebook])
expands to (we, share, location, Google), (we, share, location,
Facebook), (we, share, age, Google), etc.

For each extracted policy statement, PolicyLint creates sim-
plified policy statements, as described in Section 5.1. How-
ever, there are two special cases. First, PolicyLint only treats
verb lemmas “save” and “store” with a positive sentiment
(“not saving” or “not storing” does not mean “not collect-
ing”). Second, PolicyLint ignores policy statements with verb
lemma “use” and negative sentiment. This case leads to false
positives, as PolicyLint does not extract the collection pur-
pose. For example, “We do not use personal information for
advertising.” means that personal information is not collected
for the specific purpose of advertising.

5 Policy Contradictions

PolicyLint’s components of ontology generation and policy
extraction identify the sharing and collection statements in
privacy policies. This section formally defines a logic for
characterizing different contradictions. It then describes how
PolicyLint uses this logic to identify candidate contradictions
within privacy policies. We note that contradictions may
occur between an application’s privacy policy and the privacy
policies of third-party libraries (e.g., advertisement libraries).
While our study focuses specifically on contradictions within
an individual privacy policy, the formal logic and subsequent
analysis tools may also be used to include the privacy policies
for third-party libraries with minimal modification.

5.1 Policy Statement Representation

A complete policy statement (CPS) is a concise representa-
tion of a data collection or sharing practice from the privacy
policy. A CPS can be represented as a tuple (actor, action,
data object, entity) where the actor performs some action
(i.e., share, collect, not share, not collect) on the data object,
and the entity represents the entity receiving the data object.
For example, the statement of “We will share your personal
information with advertisers” can be represented by the tuple
of (we, share, personal information, advertisers).

PolicyLint transforms complete policy statements into a
simpler representation to reduce the complexity of formaliz-
ing contradictions within a policy. In particular, we simplify
policy statements involving the sharing of data (i.e., the CPS
action is share or not share). We capture sharing as collection
using a simplified policy statement (SPS) defined as follows.

Definition 1 (Simplified Policy Statement). An SPS is a tuple,
p = (e,c,d), where d is the data object that the statement
is discussing, ¢ € {collect,not_collect} represents whether
the object is collected or not collected, and e is the entity
receiving the data object.

To transform a CPS into an SPS, we leverage three main
insights. First, policies do not typically disclose whether the
sharing of the data occurs at the client side or server side.
Therefore, an actor sharing a data object with an entity may

imply that the actor is collecting the data and performing the
data sharing at the server side. In this case, a new policy
statement would need to be generated for allowing the actor
to collect the data object (Rule T1, Table 2). Second, a data
object being shared with an entity may imply that the entity is
collecting the information from the mobile device (Rule T2,
Table 2). Similarly, a policy for stating that the actor does not
share a data object with an entity implies that the entity is not
collecting the data from the mobile device (Rule T3, Table 2).
Finally, a policy for stating that the actor does not share a data
object implies that the actor collects the data object, because
the policy would likely have not mentioned not sharing data
that was never collected (Rule T4, Table 2).

For example, consider we have the following complete pol-
icy statements: {(we, share, personal information, advertis-
ers), (we, not share, your email address, analytics providers)}.
After applying the transformation rules, we have the following
policy statements: {(we, collect, personal information), (ad-
vertisers, collect, personal information), (analytics providers,
not_collect, your email address), (we, collect, your email
address)}.

5.2 Contradiction Types

We model an application’s privacy policy as a set of simplified
policy statements P. Let D represent the total set of data
objects and E represent the total set of entities, as represented
by ontologies for data objects and entities, respectively. A
policy statement p € P is a tuple, p = (e,c,d) where d € D,
e € E, and ¢ € {collect,not_collect} (Definition 1).

Language describing policy statements may use different
semantic granularities. One policy statement may speak in
generalizations over data objects and entities while another
statement may discuss specific types. For example, con-
sider the policies p; = (advertiser, collect, demographics)
and p, = (Google Admob, not_collect, age). If we want to
identify contradictions, we need to know that Google Ad-
Mob is an advertiser and age is demographic information.
These of relationships are commonly referred to as subsump-
tive relationships where a more specific term is subsumed
under a more general term (i.e., AdMob is subsumed under
advertisers and age is subsumed under demographics).

We use the following notation to describe binary relation-
ships between terms representing data objects and entities.

Definition 2 (Semantic Equivalence). Let x and y be terms
partially ordered by an ontology 0. x =, y is true if x and y
are synonyms, defined with respect to an ontology o.

Definition 3 (Subsumptive Relationship). Let x and y be
terms partially ordered by “is-a” relationships in an ontology
0. x T, y is true if term x is subsumed under the term y such
that x Z, y. Similarly, xC,y = xCoy V X =,).

Note that Definitions 2-3 parameterize the operators with
an ontology o. PolicyLint operates on two ontologies: data

Table 2: Rules that transform a CPS into an SPS

Rule | Transformation Rules

Rationale

T1 (actor, share, data object, entity) = (actor, collect, data object)

Unknown whether sharing occurs at the client side or server side

T2 (actor, share, data object, entity) = (entity, collect, data object)

Can observe only client-side behaviors

T3 (actor, not_share, data object, entity) = (entity, not_collect, data object)

Can observe only client-side behaviors

T4 (actor, not_share, data object, entity) = (actor, collect, data object)

If mention not share, assume implicit collection

objects and entities. Therefore, the following discussion pa-
rameterizes the operators with & for the data object ontology
and € for the entity ontology. For example, x =5 y and x =; y.

A contradiction occurs in a policy if two policy statements
suggest that the entities both may and may not collect a data
object. Contradictions can occur at the same or different
semantic levels. For example, the most simple form of contra-
diction is an exact contradiction where a policy states that an
entity will both collect and not collect the same data object,
e.g., (advertiser, collect, age) and (advertiser, not_collect, age).
Due to subsumptive relationships (Definitions 3), there are
3 relationships between terms (x =, y, x C,, ¥, and x T,).
Each binary relation applies to both entities and data objects.
Therefore, there are 32 = 9 types of contradictions. Table 3
lists all 9 types along with intuitive examples.

5.3 Contradiction Identification

PolicyLint uses the contradiction types from Table 3 to deter-
mine a set of candidate contradictions. It then uses a set of
heuristics to reduce the set of candidate contradictions that
are potentially low quality indicators of underlying problems.
Next, PolicyLint prepares the contradictions for presentation
by collapsing duplicate contradictions, linking other metadata
(e.g., download counts of applications), and by using a set of
filtering heuristics to allow the regulator or privacy analysts
to focus on specific subclasses of candidate contradictions.
The remainder of this section describes this process.

Initial Candidate Set Selection: Given policy statements
p1 and p;, PolicyLint ensures that p;.c does not equal p;.c,
as contradictions require opposing sentiments. PolicyLint
then compares entities p;.e and p;.e, determining if they are
equal or have a subsumptive relationship. A subsumptive
relationship occurs if there is a path between the entities in
the entity ontology. When comparing entities, PolicyLint
treats the terms in Table 8 as synonyms for the first party (i.e.,
“we”). If an entity match is found, PolicyLint then performs
the same steps for data objects p;.d and p;,.d using the data
object ontology. If a data object match is found, PolicyLint
adds the candidate contradiction to the candidate set. Note
that PolicyLint ignores entities and data objects in policy
statements that are not contained in ontologies, as it cannot
reason about those relations. However, if PolicyLint cannot
find a direct match for a term in the ontology, it will try to
find sub-matches by splitting the term on the coordinating
conjunction terms (e.g., “and”, “or”’) and checking for their
existence in the ontologies.

Candidate Set Reduction: PolicyLint uses heuristics to

prune candidate contradictions that are likely low quaility
indicators of underlying problems. To begin, PolicyLint re-
moves contradictions if the policy statements were generated
from the same sentence. For example, “We do not collect your
personal information except for your name.” produces simpli-
fied policy statements (we, not_collect, personal information)
and (we, collect, name), which causes a C2 contradiction.
PolicyLint ignores same sentence contradictions, as they typi-
cally occur to provide clarifications.

PolicyLint removes contradictions that occur based on po-
tentially poor relations discovered in the the ontologies. For
example, PolicyLint filters out contradictions that occur be-
tween certain data object pairs, such as “usage information”
and “personal information.” Contradictions whose entities

CLINNTS

refer to the user (e.g., “user”, “customer”, “child”) or involve
terms for general data objects (e.g., “information”, “content”,
“material”’) or entities (e.g., “individual”, “public”) are also
removed. Finally, PolicyLint removes candidate contradic-
tions where the negative sentiment policy statement may be
conditioned with age restrictions or based on user choice by
searching for common phrases in the sentences that gener-
ated the policy statements (e.g., “under the age of”, “from
children”, “you do not need to provide”). Note that some of
these reductions may occur during candidate set construction
to reduce complexity of the analysis.

Candidate Set Filtering: PolicyLint further filters the set of
candidate contradictions into subsets based on the data objects
involved in the contradiction to allow for targeted exploration
during verification. For example, all of the contradictions
with statements involving collecting email address but not
collecting personal information are placed into one subset
(e.g., (*, collect, email address) and (*, not_collect, PII)).
Contradiction Validation: Given the filtered subsets of can-
didate contradictions, the next step is to explore certain sub-
sets and validate candidate contradictions. To validate a can-
didate contradiction, the analyst reads through the policy
statements and sentences that generated them in context of
the entire policy and makes a decision.

6 Privacy Study

Our primary motivation for creating PolicyLint was to analyze
contradicting policy statements within privacy policies. In
this section, we use PolicyLint to perform a large scale study
on 11,430 privacy policies from top Android applications
from September 2017.

Dataset Collection: To select our dataset, we scraped Google

Table 3: Policy Contradictions: P = {(e;,collect,dy), (ej,not_collect,d;) }

Rule Logic Example

Example Explanation

Cl1 ej=¢ej N\ dy =5d; | (companyX, collect, email address)

(companyX, not_collect, email address)

Inconclusive due to exact contradiction

C2 ei=¢e; NdyCsdp | (companyX, collect, email address)

(companyX, not_collect, personal information)

companyX does not collect any personal information other than
your email address

C3 eiEgL)j/\dkjgdl

(companyX, collect, personal information)

companyX may collect any personal information other than your

(companyX, not_collect, email address) name
C4 eiCeej N dy=5d; | (companyX, collect, email address) No advertiser may collect your email address except for compa-
(advertiser, not_collect, email address) nyX

C5 ejCeej N dyCsdp | (companyX, collect, email address)

(advertiser, not_collect, personal information)

No advertiser may collect any personal information except com-
panyX may collect your email address

C6 eiCeej A dy Js d;
(advertiser, not_collect, email address)

(companyX, collect, personal information)

companyX may collect any personal information except for your
email address

C7 e; Jeej N dy =5d; | (advertiser, collect, email address)

(companyX, not _collect, email address)

Any entity that is an advertiser except for companyX may collect
your email address

C8 eiJeej NdiyCsd (advertiser, collect, email address)

(companyX, not_collect, personal information)

Any advertiser including companyX may collect your email
address

C9 e,':Igej'/\dkjadl

(advertiser, collect, personal information)
(companyX, not_collect, email address)

companyX may collect any personal information except for your
email address

Play for the privacy policy links for up to the top 500 free
applications across Google Play’s 35 application categories
in September 2017. We used use the Selenium WebDriver in
a headless Google Chrome browser to allow for the execution
of dynamic content (e.g., Javascript). We exclude applications
that did not have a privacy policy link on Google Play, those
whose privacy policy pages were unreachable at the time of
data collection, and privacy policies where the majority of
the document was not written in English, as discussed in
Appendix A. We converted the HTML privacy policies to
plaintext documents. Our final dataset consists of 11,430
privacy policies.

6.1 General Policy Characteristics

PolicyLint extracted policy statements from 91% of the poli-
cies in our dataset (10,397/11,430). From those policies,
PolicyLint extracted 438,667 policy statements from 177,169
sentences that PolicyLint identified as a sharing or collection
sentence. Of those policy statements, 32,876 had negative
sentiment and 405,789 had positive sentiment. In particular,
60.5% (6,912/11,430) of policies had at least one negative
sentiment policy statement and 89.6% (10,239/11,430) of
policies had at least one positive sentiment policy statement.
Finding 1: Policies frequently contain negative sentiment pol-
icy statements that discuss broad categories of data. For the
60.5% of policies with at least one negative sentiment policy
statements, the data object “personal information” appeared
in 67.7% of those policies (4,681/6,912). This demonstrates
the importance of handling negative policy statements, as
around 41.0% of the policies contain a negative sentiment
policy statement that claims that a broad type of data (i.e.,
“personal information”) is not collected. Further, we measured
the distance from the negation (i.e., “not”) to the verb that
they modify, and found that the 28.2% (3,234/11,430) of poli-
cies have a distance greater than one word away. This calls
into questions prior work [22, 24] that only assume positive

sentiment when considering sharing and collection statements
when verifying behavior-to-policy compliance, as they could
be incorrect up to 60.5% of the time when reasoning over
sharing and collection statements. Further, approaches that
handle negations using bigrams [28] would have failed to
reason about 28.2% of the policies.

6.2 Candidate Contradictions

1 6 11 16 21 26 31 36 41 46 51
Number of Contradictions

Figure 3: CDF of Contradictory Policy statements: Around
50% of the policies containing one or more contradictions
have 3 or fewer unique candidate contradictions.

Based on PolicyLint’s fine-grained policy statement extrac-
tion, we found that 59.1% (6,754/11,430) of the policies were
candidates for contradiction analysis, as they contain at least
one positive and one negative sentiment policy statement.
There were 13,871 and 129,575 policy statements among
these with negative and positive sentiment, respectively.
Finding 2: 18.0% of privacy policies contain candidate con-
tradictions. PolicyLint identified 18,457 candidate contradic-
tions across around 18.0% (2,055/11,430) of policies. Fig-
ure 3 shows slightly more than half (56.3%) of contradictory
policies have 3 or fewer unique candidate contradictions. The
relatively low number of candidate contradictions per policy
indicates that manual validation is feasible. Further, roughly

Avg. Contradictions
Per Contradictory Policy

S=NWAENA

Y 53 \% N o
v R
e o @o%pc ‘z\"
e‘) 95 Q\e \
9 ‘\ K Q‘(\gg ?,(

\‘*’Q -

\»‘;‘

q»Q \P z*
0
L

c9
c8
c7
Cé6
C5
Cc4
c3
C2
C1

»
D Q“\%&g‘b
QRN ‘b‘

&

\ %

& QS
‘e
R ‘3‘@;“ s“e

Application Category

Figure 4: Average Number of Policy Contradictions Per Application Category.

Personal Information

|1

Geographical Location
Email Address

Non-Personal Information
IP Address

Person Name

Information About You
Postal Address

Collect

Payment Card Information

Phone Number

Device Information

Device Identifier

Religious / Philosophical Beliefs

Race

Financial Information
0.0

eé,e » &S
‘\e«“ & \&\&Qj’@‘@
& & B

&

Not Collect

Figure 5: Log 10 Frequency of Data Type Pairs in Contra-
dictions: Negative sentiment policy statements that discuss
broad categories of data are problematic.

4 in 5 policies are not contradictory, indicating writing non-
contradictory policies is possible.

Finding 3: Contradiction prevalence and frequency does
not substantially vary across Google Play app categories.
We plotted the ratio of policies containing candidate contra-
dictions for apps in each Google Play category to analyze
whether policies from certain categories were more contra-
dictory than others. Note that we exclude the graph in the
paper due to space constraints. The categories with poli-
cies least and most prone to contradiction are Beauty and
Events, respectively. However, when analyzing the policies
within those categories, we found that their means were being
skewed by contradictory policies for applications by the same
developer. When recomputing the average, these categories
followed the general trend. Contradictory policies accom-
pany 10-to-30% of apps across all categories. We find that
contradictory policies are not substantially more prevalent in
particular categories of apps, but instead occur consistently
in apps from every category. In a similar analysis, we found
that contradiction prevalence does not substantially vary by
download count as well.

10

Figure 4 displays the average number of candidate contra-
dictions for policies containing one or more candidate con-
tradictions. We found that contradiction frequency for con-
tradictory policies did not substantially vary across Google
Play app categories. Initial analysis indicated contradictory
policies for apps in the Food & Drink category contain over
seven contradictions on average. Further analysis revealed
this is due to policies with 15 unique contradictions in 31 apps
produced by the same developer. Excluding the outliers these
brings the category’s average to 3.44 contradictions per app,
which fits the trend of the rest of the categories. This may
indicate that poor policies are linked to problematic develop-
ers. Similar analysis on GAMES, Auto & Vehicles, News &
Magazines produced similar results. We find that the number
of contradictions per policy is roughly equivalent across appli-
cation categories, which means that one application category
is not necessarily more contradictory on average than another.

Finding 4: Negative sentiment policy statements that discuss
broad categories of data are problematic. Figure 5 shows
the frequency of the most common data type pairs referred to
in contradictory policy statements. The contradicting policy
statements in the leftmost column are most problematic. This
column represents contradictions that discuss not collecting
broad types of data and collecting more specific data types.
As we demonstrate in Section 6.3, they can lead to a myriad
of problems when trying to interpret the policy including
making interpretation ambiguous in certain cases.

The topmost row corresponds to cases where broad infor-
mation is stated to be collected, and specific data types are
then stated to not be collected. This is a common occurrence,
yet it may not necessarily be an unwanted property of policies,
because saying a broad data type is collected does not neces-
sarily imply that every specific subtype of data is collected.
There may be clearer ways for policy writers to convey this
information, such as explicitly stating all of the data types
collected and shared. However, policies that explicitly narrow
the scope of their data sharing and collection practices can
be seen as more desirable in contrast with policies that just
disclose practices over broad categories of data.

6.3 Validating Policy Contradictions

In this section, we describe the findings from our validation
of candidate contradictions. Due to resource constraints, we
did not validate all of 18,457 candidate contradictions from
the 2,060 policies. Instead, we narrowed the scope of our
study by choosing groups of candidate contradictions based
the data objects involved by analyzing Figure 5. We mainly
limited our scope to candidate contradictions that discussed
not collecting “personal information” and collecting data that
is subsumed under or equivalent to personal information (i.e.,
contradiction types C1, C2, C5, C8). In paricular, we explore
candidate contradictions that discuss not collecting “personal
information” and collecting “email address,” “device identi-
fier,” or “personal information.”

Note that while the majority of our study is focused on
personal information, we also explored two other groups of
candidate contradictions that caught our attention when an-
alyzing the heatmap. In particular, we were surpised to find
that our ontology captured contradictions between data that
can be derived from the other. The groups of candidate con-
tradictions that we validated for derived data were candidate
contradictions that discussed: (1) not collecting “geographic
location” and collecting “IP address”; and (2) not collecting
“postal address” and collecting “geographic location.”

To validate candidate contradiction, we begin by reading
through the sentences that generated each policy statement
for that candidate contradiction to ensure correctness of our
policy statement extraction. If there was an error with policy
statement extraction, we record the candidate contradiction
as a false positive and stop analysis. Next, we locate the
sentences within the policy and view the context in which
they appear (i.e., section, surrounding sentences) to determine
whether the policy statements are contradictory. We try to
determine why the contradiction occurred if possible and
record any obversations about the policy.

6.3.1 Personal Information and Email Addresses

For candidate contradictions with negative statements about
“personal information” and with positive statements about
“email address,” we found 618 candidate contradictions across
333 policies (C2, C5, C8) We validated 204 candidate con-
tradictions from 120 policies. We found 5 candidate contra-
dictions were false positives due to inaccuracies labeling data
objects by the NER model. From the 199 remaining candidate
contradictions across 118 policies, we had the following main
findings.Note that when considering the findings discussed
below, the terms “personally identifiable information” and
“personal information” are commonly used synonymously in
USA regulations and “personal data” is considered the EU
equivalent albeit covering a broader range of information.

Finding 5: Policies are stating that certain types of common
personally identifiable information, such as email addresses,
as non-personally identifiable. When validating 14 candidate

11

contradictions, we found 14 policies that explicitly state that
they do NOT consider email address as personally identifiable
information. 11 of those policies were from apps released
the same developer (OmniDroid) where the most popular
app in the set (com.omniluxtrade.allrecipes) has over 1M+
downloads. OmniDroid’s privacy explicitly lists email ad-
dress when defining non-personally identifiable information.
The remaining 3 policies belong to another app developer,
PlayToddlers. The app in our dataset are explicitly targeted
towards children from 2-8 years old and have between S00K-
1M+ downloads for each app. Their policy states the follow-
ing sentence verbatim, “When the user provides us with an
email address to subscribe to the “PlayNews” mailing list, the
user confirms that this address is not a personal data, nor does
it contain any personal data.”

The fact that any privacy policies are declaring email ad-

dresses as non-personal information is surprising, as it goes
against the norms of what data is considered personal infor-
mation as defined by regulations (e.g., CalOPPA, GDPR),
standards bureaus (NIST), and common sense.
Finding 6: Policies use blanket statements affirming that per-
sonal information is not collected and contradict themselves
by stating that subtypes of personal information are collected,
such as email addresses. When validating 182 candidate
contradictions, we found 104 policies broadly make blan-
ket statements that personal information is not collected in
one part of the policy and then directly contradict their prior
statements by disclosing that they collect email addresses.
We found 69 of those policies (127 validated contradictions)
state that they do not collect personal information, but later
state that they collect email addresses for some purpose. Of
those 69 policies, 32 policies define email address as personal
information in one part of their policy. Due to the lack of defi-
nition of what they consider personal information in the other
37 policies, it is unclear whether they do not consider email
address as personal information or are just contradictory.

20 of those policies that explicitly defined email as per-
sonal information, but contradicted themselves, are from
apps by the same organization (emoji-keyboard.com). The
most popular app in that group had 50M+ downloads
(emoji.keyboard.emoticonkeyboard). The following two sen-
tences were in the policy verbatim: (1) “Since we do not
collect Personal Information, we may not use your personal
information in any way.”; (2) “For users that opt in to Emoji
Keyboard Cloud, we will collect your email address, basic
demographic information and information concerning the
words and phrases that you use (” Language Modeling Data”)
to enable services such as personalization, prediction syn-
chronization and backup.” This is clearly a contradictory
statement and arguably a misleading practice.

A policy for a particular app with 1M+ downloads
(com.picediting.haircolorchanger) appear to have been poten-
tially trying to mislead users by using bold text to highlight
desirable properties and then contradicting themselves. For

example, the following excerpt was in the the policy verba-
tim including the bold formatting: “We do not collect any
Personal information but it may be collected in a number of
ways. We may collect certain information that you voluntarily
provide to us which may contain personal information. For ex-
ample, we may collect your name, email address you provide
us when you contact us by e-mail or use our services...”
Finding 7: Policies consider hashed email addresses as
pseudonymized non-personal information and share it with
advertisers. When validating three candidate contradictions,
we found two policies discuss sharing hashed email addresses
with third parties, such as advertisers. One candidate contra-
dictions was a false positive due to misclassifying a sentence
discussing opt-out choices as a sharing or collection sen-
tence. The other policy belonged to an app named Tango
(com.sgiggle.production). Tango is a messaging and video
call app, which has over 100M+ downloads on Google Play
and according to their website has 390M+ users globally.
Their policy states the following sentences verbatim , “For
example, we may tell our advertisers the number of users our
app receives or share anonymous identifiers (such as device
advertising identifiers or hashed email addresses) with adver-
tisers and business partners.” Tango explicitly states that they
consider hashed email addresses as anonymous identifiers. It
is arguable whether hashing is sufficient for pseudonymiza-
tion as defined by GDPR, as it is likely that advertisers are
using hashed email addresses to identify individuals.
Finding 8: Services that auto-generate template-based poli-
cies for app developers are producing contradictory policies.
During our validation of the policies in the prior findings, we
noticed that many policies had similar structural composi-
tions and contained a lot of the same language in paragraphs.
When validating 78 candidate contradictions, we found 59
contradictory policies that were automatically generated or
used templates. Identical policy statements from various
developers suggested that some policies may be generated
automatically or acquired from a template. We investigated
these cases and identified 59 policies that used 3 unique tem-
plates. We check that these were not policies for apps created
by the developers or organization. The problems that the
general templates were causing are discussed in Findings 6
and 10.This demonstrates that poor policy generators can be
a contributing factor for numerous contradictory policies.

6.3.2 Personal Information and Device Identifiers

For the candidate contradictions with negative statements
about “personal information” and with positive statements
about “device identifiers,” we found 234 candidate contra-
dictions across 155 policies. We investigated this group of
candidate contradictions as there are differing regulations
across countries on whether device identifiers are consider
personal information. For example, a court case from New
York (Robinson v. Disney Online) ruled that device identifiers

12

are not personal information. However, the GDPR defines
device identifiers as personal information. Therefore, our
goal was to check whether policies were complying to the
more strict GDPR definition of personal information or to
the US definition, as this could hint towards problems with
complying to regulations across country boundaries. In total,
we validated 10 candidate contradictions across 9 policies.
Finding 9: Policies are considering device identifiers as
non-personal information, which raises concerns regarding
globalization of their policies. When validating 10 can-
didate contradictions, we found 9 policies that state that
they do not collect personal information, but later state they
they collect device identifiers. We find that classification
of device identifiers vary across policies. In particular, we
found 4 policies that explicitly describe device identifiers as
non-personal information. The most popular app is Tango
(com.sgiggle.production), which boasts about 390M+ global
users on their website. It is likely a safe assumption that some
of those users are in the EU, which is subject to GDPR. As
there current privacy policy still contains this statement, it
may hint that they may not be GDPR compliant.

6.3.3 Personal Information and Personal Information

For the candidate contradictions where the data type of the
negative sentiment policy statement is “personal information’
and the data type of the positive sentiment policy statement
is “personal information”, we found 5100 candidate contra-
dictions across 1061 policies. We validate 254 candidate
contradictions across 153 policies.

Finding 10: Policies directly contradict themselves. When
validating the 254 candidate contradiction, we found that
the 153 policies directly contradicted themselves on their
data practices on “personal information”. For example, the
policy for an application with 1M+ downloads, states: “We
may collect personal information from our users in order
to provide you with a personalized, useful and efficient ex-
perience”. However, later in the policy they state, “We do
not collect Personal Information, and we employ adminis-
trative, physical and electronic measures designed to protect
your Non-Personal Information from unauthorized access and
use.” These scenarios are clearly problematic, as the policies
state both cases and it makes it difficult, if not, impossible to
determine their actual data sharing and collection practices.

i

6.3.4 Derived Data

In this section, we discuss two cases of contradictions that
PolicyLint captures between data objects where one data
type can be derived from the other. We explore two cases: (1)
location from IP address; and (2) postal address from location.
In particular, we explore candidate contradictions where the
negative policy statements discuss the data that can be derived
from the other piece (i.e., location for “location from IP”, and

postal address for “postal address from location”).

For “location from IP”, we found 170 candidate contradic-
tions from 167 policies that represented collecting IP address
and not collecting location information. We narrowed down
the candidate contradictions by filtering out statements that
discuss precise location, as IP address does not provide a
precise location. This filtering resulted in 18 candidate contra-
dictions from 18 different policies. We note that 3 candidate
contradictions from 3 policies were false positives due to
incorrect negation handling. We validated 15 candidate con-
tradictions across 15 different policies for this case.

For “postal address from location”, we found 27 candidate
contradictions across 20 policies. 5 candidate contradictions
were false positives due to sentence misclassification (4) or
errors handling negations (1). We validated the remaining 22
candidate contradictions across 17 applications for this case.
Finding 11: Policies state that they do not collect certain data
types, but state that they collect other data types in which the
original can be derived. When validating the 15 candidate
contradictions for “location from IP”, we found that all 15
policies were stating that they do not collect location infor-
mation, but state that they automatically collect IP addresses.
As coarse location information can generally be derived from
the user’s IP address, it can be argued that the organization is
technically collecting the user’s location information. Inter-
estingly, 2 of the policies discuss that if users disable location
services, then location will not be collected. However, they
still collect IP addresses regardless of the privacy settings.

When validating 20 candidate contradictions for “postal
address from location”, we found that 15 policies discussed
not collecting postal addresses, but then state that they collect
locations. Similar to the above case, postal addresses can
be derived from location data (i.e., latitude and logitudes).
Again, the argument can be made that they are collecting
information precise enough to be considered a postal address,
which causes a contradiction. For the other 2 candidate con-
tradictions from 2 policies, it was not clear whether it was
actually a contradiction, as they state that they do not collect
addresses from the user’s address book, which is a limitation
of our tool on handling context sensitivity.

7 Related Work

Recent research has increasingly focused on automated anal-
ysis of privacy policies. Systems have used NLP for de-
riving answers to a limited of binary questions [27], from
privacy policies, applied topic modeling to reduce ambigu-
ity in privacy policies [23], and used data mining [26] or
deep learning [11] models to extract summaries from poli-
cies of what and how information is used. Other related
works [22, 24] have used crowdsourced ontologies for policy
analysis. These methods are often limited by lack of accuracy,
completeness, and collection complexity. Prior research has
also attempted to infer negative statements in privacy poli-

13

cies with limited success. Zimmeck et al. [28] and Yu et
al. [25] rely on keyword-based techniques of using bi-grams
and verb modifiers, respectively, to detect the negative state-
ments. In contrast to all these previous approaches, our work
provides a more comprehensive analysis with a automati-
cally constructed ontology and accounting for negations and
exclusions in text.

To the best of our knowledge, we are the first to analyze sin-
gle policy-level contradictions resulting from the interaction
of varying semantic levels with negative statements. However,
Yu et al. [25] developed a system that verifies the consistency
of an app’s privacy policy with the privacy policies of the
libraries used by the app.

Analyzing the usability and effectiveness of privacy poli-
cies is another well-researched focus area. Research has
shown that privacy policies are hard to comprehend by
users [18] and proposals have been made to simplify their
understanding [19, 20]. Cranor et al. [4] performed a large-
scale study of privacy notices of US financial institutions
to highlight a number of concerning practices. Their pol-
icy analysis relies on standardized models used for such no-
tices; in contrast, privacy policies in mobile apps follow no
such standards making the analysis more challenging. Other
approaches [15, 16, 21] have attempted to bridge the gap
between users’ privacy expectations and app policies. SPAR-
CLE [2] follows an alternative approach of privacy com-
pliance by deriving machine-readable operational directives
from policies written in natural language. While standardiz-
ing privacy policy specification has been attempted [3] with
limited success [17], privacy policies for mobile apps have
generally failed to adhere to any standards. The concern-
ing findings in our study highlight the need to renew such
standardization discussion.

8 Conclusion

This work introduced PolicyLint, a privacy policy analysis
tool that uses natural language policy techniques to identify
contradictory sharing and collection practices within privacy
policies. PolicyLint reasons about contradictory policy state-
ments that occur at different semantic levels of granularity
by auto-generating domain ontologies. We run PolicyLint on
11,430 privacy policies from popular applications on Google
Play and find that around 18% of the policies contain con-
tradictions. Upon deeper inspection of the contradictions,
we found a myriad of concering issues with privacy policies,
such as policies explicitly defining common subtypes of per-
sonal information as non-personal information, such as email
addresses. PolicyLint can assist this process by automatically
reasoning over these problematic areas within policies.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

BOWERS, J., REAVES, B., SHERMAN, I. N.,
TRAYNOR, P., AND BUTLER, K. Regulators, Mount
Up! Analysis of Privacy Policies for Mobile Money
Services. In Proceedings of the Symposium on Usable
Privacy and Security (SOUPS) (2017).

BRODIE, C. A., KARAT, C.-M., AND KARAT, J. An
Empirical Study of Natural Language Parsing of Privacy
Policy Rules Using the SPARCLE Policy Workbench.
In Proceedings of the Symposium on Usable Privacy
and Security (SOUPS) (2006).

CRANOR, L. F., LANGHEINRICH, M., MARCHIORI,
M., PRESLER-MARSHALL, M., AND REAGLE, J. The
Platform for Privacy Preferences 1.0 (P3P1.0) Specifi-
cation. W3C Recommendation 16 (Apr. 2002).

CRANOR, L. F., LEON, P. G., AND UR, B. A Large-
Scale Evaluation of US Financial Institutions’ Standard-
ized Privacy Notices. ACM Transactions on the Web
(TWEB) (2016).

EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND
KRUEGEL, C. An empirical study of cryptographic
misuse in Android applications. In Proceedings of the
2013 ACM SIGSAC conference on Computer & commu-
nications security (2013).

EVANS, D. Annotation-Assisted Lightweight Static
Checking. In The First International Workshop on
Automated Program Analysis, Testing and Verification
(2000).

EVANS, D., GUTTAG, J., HORNING, J., , AND TAN,
Y. M. LCLint: A Tool for Using Specifications to Check
Code. In SIGSOFT Symposium on the Foundations of
Software Engineering (1994).

EVANS, D., AND LAROCHELLE, D. Statically Detect-
ing Likely Buffer Overflow Vulnerabilities. In 2001
USENIX Security Symposium (2001).

EVANS, D., AND LAROCHELLE, D. Improving Secu-
rity Using Extensible Lightweight Static Analysis. I[EEE
Software (Jan. 2002).

GLUCK, J., SCHAUB, F., FRIEDMAN, A., HABIB, H.,
SADEH, N., CRANOR, L. F., AND AGARWAL, Y. How
short is too short? Implications of length and framing
on the effectiveness of privacy notices. In 12th Sympo-
sium on Usable Privacy and Security (SOUPS) (2016),
pp- 321-340.

HARKOUS, H., FAwWAZ, K., LEBRET, R., SCHAUB, F.,
SHIN, K. G., AND ABERER, K. Polisis: Automated
analysis and presentation of privacy policies using deep

14

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

learning. In Proceedings of the USENIX Security Sym-
posium (2018).

HEARST, M. A. Automatic Acquisition of Hyponyms
from Large Text Corpora. In Proceedings of the Confer-
ence on Computational Linguistics (COLING) (1992).

HONNIBAL, M., AND MONTANI, I. spaCy 2: Natu-
ral Language Understanding with Bloom Embeddings,
Convolutional Neural Networks, and Incremental Pars-
ing. To appear (2017).

JOHNSON, S. C. Lint, a C Program Checker. In COMP.
SCI. TECH. REP (1978), pp. 78-1273.

LIN, J., SADEH, N., AND HONG, J. I. Modeling Users’
Mobile App Privacy Preferences: Restoring Usability
in a Sea of Permission Settings. In Proceedings of the
Symposium on Usable Privacy and Security (SOUPS)
(2014).

Liu, F., RAMANATH, R., SADEH, N., AND SMITH,
N. A. A Step Towards Usable Privacy Policy: Auto-
matic Alignment of Privacy Statements. In Proceedings
of the International Conference on Computational Lin-
guistics (COLING) (2014).

MARELLA, A., PAN, C., Hu, Z., SCHAUB, F., UR,
B., AND CRANOR, L. F. Assessing Privacy Awareness
from Browser Plugins.

MCDONALD, A. M., AND CRANOR, L. F. The Cost of
Reading Privacy Policies. I/S Journal of Law and Policy
for the Information Society (ISJLP) 4 (2008).

NORTON, T. B. Crowdsourcing Privacy Policy Interpre-
tation. Proceedings of the Research Conference on Com-
munications, Information, and Internet Policy (TPRC)
(2015).

RAMANATH, R., SCHAUB, F., WILSON, S., L1U, F.,
SADEH, N., AND SMITH, N. A. Identifying Relevant
Text Fragments to Help Crowdsource Privacy Policy
Annotations. In Proceedings of the AAAI Conference
on Human Computation and Crowdsourcing (HCOMP)
(2014).

RAO, A., SCHAUB, F., SADEH, N., ACQUISTI, A.,
AND KANG, R. Expecting the Unexpected: Under-
standing Mismatched Privacy Expectations Online. In
Proceedings of the Symposium on Usable Privacy and
Security (SOUPS) (2016).

SLAVIN, R., WANG, X., HOSSEINI, M. B., HESTER,
J., KRISHNAN, R., BHATIA, J., BREAUX, T. D., AND
Niu, J. Toward a Framework for Detecting Privacy
Policy Violations in Android Application Code. In Pro-
ceedings of the International Conference on Software
Engineering (ICSE) (2016).

[23] STAMEY, J. W., AND ROsSI, R. A. Automatically
Identifying Relations in Privacy Policies. In Proceed-
ings of the ACM International Conference on Design of
Communication (SIGDOC) (2009).

[24] WANG, X., QIN, X., HOSSEINI, M. B., SLAVIN, R.,
BREAUX, T. D., AND NI1U, J. GUILeak: Tracing Pri-
vacy Policy Claims on User Input Data for Android
Applications. In Proceedings of the International Con-

ference of Software Engineering (ICSE) (2018).

[25] Yu, L., Luo, X., Liu, X., AND ZHANG, T. Can
We Trust the Privacy Policies of Android Apps? In
Proceedings of the IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN) (2016).

[26] ZAEEM, R. N., GERMAN, R. L., AND BARBER, K. S.
PrivacyCheck: Automatic Summarization of Privacy
Policies Using Data Mining. ACM Transactions on

Internet Technology (TOIT) (2013).

[27] ZIMMECK, S., AND BELLOVIN, S. M. Privee: An
Architecture for Automatically Analyzing Web Privacy
Policies. In Proceedings of the USENIX Security Sym-

posium (2014).

[28] ZIMMECK, S., WANG, Z., Z0U, L., IYENGAR, R.,
Liu, B., ScHAUB, F., WILSON, S., SADEH, N.,
BELLOVIN, S. M., AND REIDENBERG, J. Automated
Analysis of Privacy Requirements for Mobile Apps. In
Proceedings of the ISOC Network and Distributed Sys-

tem Security Symposium (NDSS) (2017).

A Preprocessing Privacy Policies

Privacy policies are commonly made available to users via a
link within the Google Play Store. The link leads to a page on
the developer’s website containing the policy in HTML for-
mat. Most NLP parsers expect plaintext input, therefore Pol-
icyLint begins by converting the HTML privacy policy into
plaintext. Conversion from HTML is challenging for several
reasons. First, HTML policies may contain non-displayable
elements or non-relevant text to the privacy policy, such as
navigation links. Second, HTML documents occasionally
contain pop-up elements, which may interrupt the flow of text.
Third, NLP parsers have difficulty consuming formatted lists,
resulting in problems such as detecting incorrect sentence
breaks or mistagging parts-of-speech and typed dependencies.
We now describe how PolicyLint overcomes these challenges.
Removing Non-relevant and Non-displayed Text: Privacy
policies are frequently embedded as main content on a web-
page containing navigational elements and other non-relevant
text. Additionally, non-displayed text should also be stripped
from the HTML, as we want to analyze the policies that are
actually displayed to users. PolicyLint extracts the privacy

15

policy portion of the Webpage by iterating over the elements
in the HTML document. To remove non-relevant text, Pol-
icyLint strips comment, style, script, nav, and video
HTML tags. PolicyLint also strips HTML links contain-
ing phrases commonly used for page navigation (e.g., “learn
more,” “back to top,” “return to top”). Finally, PolicyLint re-
moves HTML span and div tags using the "display:none"
style attribute.

Converting HTML to Flat Plaintext Documents: Certain
HTML elements, such as pop-up items, result in a non-flat
structure. When flattening of the HTML documents, Poli-
cyLint must ensure the plaintext document has a formatting
style similar to the text displayed on the webpage (e.g., the
same paragraph and sentence breaks). PolicyLint handles
pop-up elements by relocating the text within the pop-up el-
ement to the end of the document. Pop-up elements often
provide additional context, an explanation, clarification, or
a definition of a term. Therefore, relocating these elements
should not have a significant effect on processing the refer-
encing paragraph. To ensure formatting style is maintained,
PolicyLint converts the HTML document to markdown using
html2text.

Merging Formatted Lists: Formatted lists within text can
cause NLP parsers to incorrectly detect sentence breaks or in-
correctly tag parts-of-speech and typed dependencies. These
parsing errors can negatively impact the semantic reasoning
of sentences. Therefore, PolicyLint merges the text within list
items with the preceding clauses before the list begins. Poli-
cyLint also uses a set of heuristics for nesting list structures
to ensure list items propagate to the correct clause.

PolicyLint merges formatted lists in two phases. The first
phase occurs before the aforementioned conversion to mark-
down. In this phase, PolicyLint iterates over HTML elements
using list-related HTML tags (i.e., o1, ul, 1i) to annotate
list structure and nesting depth of items. The second phase
occurs after the conversion to markdown. In this phase, Poli-
cyLint searches for paragraphs ending in a colon where the
next sentence is a list item (e.g., starts with bullets, roman
numerals, formatted numbers, or contains annotations from
the first phase). It then follows Algorithm 1 to form complete
sentences by merging the list item text with the preceding
text.

Algorithm 1 proceeds as follows. PolicyLint iterates over
the paragraphs in the markdown document to find paragraphs
that end in a colon. For each paragraph that ends in a colon,
PolicyLint checks whether the proceeding paragraph is a list
item (e.g., starts with a common bullet points, roman numer-
als, numbers, or was annotated during the HTML processing
stage). If the line of text is a list item, PolicyLint creates
a new paragraph by appending the list item text to the pre-
ceeding text that ended with the colon. If the list item ends
in another colon, PolicyLint repeats the same process above
but by prepending the nested list items to the new paragraph
created in the last step. PolicyLint then leverages the symbols

Algorithm 1 Merging Formatted Lists

1: procedure MERGELIST(docPos,currentLine, prependTxt ,itemSymb)

2: if endsWithColon(currentLine) then
3: prependTxt < prependT xt + currentLine
4: while nxtLine < getNextLineInDoc(docPos + +) do
5: if beginsWithltemSymbol (nxtLine,itemSymbol) then
6: itemSymbol < predictNextItemSymbol (nxtLine)
7: newTxt < prependTxt + stripSymbols(nxtLine)
8: if endsWithColon(nxtLine) then
9: docPos < MergeList(docPos,nxtLine,newTxt, NULL)
10: else
11: write(newTxt)
12: else
13: return docPos — 1
14: return docPos

that denote list items (e.g., bulletpoints, numbers, letters, ro-
man numbers) to predict the next item in the list’s expected
symbol, which is useful for detecting boundaries of nested
lists. For example, if the current list item is started with “(1),”
then we would expect the next list item to be started with “(2).
If the item symbol matches to expected symbol, PolicyLint
merges the list item text as discussed above and continues
this process. If the item symbol does not match the expected
symbol, PolicyLint stops this process and returns.

Final Processing: The final step converts the markdown to
plaintext. During this process, PolicyLint strips markdown
formatting such as header tags and bullet points, normalizes
unicode characters, and strips list item numbering and other
format characters. Finally, PolicyLint uses 1angid to deter-
mine if the majority of the document is written in English.
If not, PolicyLint discards the document. If so, PolicyLint
outputs the plaintext document.

tL)

B Training Sentence Generation

As discussed in Section 4, PolicyLint requires a training set of
sharing and collection sentences to learn underlying patterns
from in order to identify “unseen” sharing and collection sen-
tences. As manually selecting a set of sharing and collection
sentences with diverse grammattical structures is a tedious
process, we opted to auto-generate the training sentences
for PolicyLint instead. Note that auto-generating sentences
does not adversely impact the extensibility of PolicyLint, as
adding a new pattern is as simple as feeding PolicyLint the
new sentence. To identify the templates, we used our do-
main expertise to identify different sentence compositions
that could describe sharing and collection sentences. We
identified 16 sentence templates, as shown in Table 4.

To fill the templates, we need to substitute an en-
tity (ENT), data object (DATA), the correct tense
of an SoC verb (VERB_PRESENT, VERB_PAST,
VERB_PRESENT_PARTICIPLE), and a preposition
that describes with whom the sharing occurs for sharing verbs
(PREP). We began by identifying the present tense, past

16

tense, and present participle forms of all of the SoC verbs
(e.g., “share”, “shared”, “sharing”, respectively). We then
identified common prepositions for each of the sharing verbs
that describe with whom the sharing occurs. For example, for
the terms share, trade, and exchange the preposition is “with”
and for the terms sell, transfer, distribute, disclose, rent,
report, transmit, send, give, provide the preposition is “to.”

We set DATA to the phrases “your personal information’
and “your personal information, demographic information,
and financial information.” Similarly, we set ENT to the
phrases “advertiser” and “advertisers, analytics providers,
and our business partners.” Note that we included conjuncts
of the DATA and ENT placeholders to account for deviations
in the parse tree due to syntactical ambiguity (i.e., a sentence
can have multiple interpretations). For example, consider the
sentence, “We share your personal information with adver-
tisers”. In one interpretation, the prepositional phrase “with
advertisers” modifies the verbal phrase “share your personal
information.” However, a second interpretation could be that
“with advertisers” modifies the noun phrase “your personal
information.” We found that the NLP parser [13] that we used
produced a parse tree with first interpretation when the place-
holder was filled with a singular value, but produces a parse
tree with the second interpretation when the placeholder was
filled with a conjunct of data objects and or entities. There-
fore, we generate two sentences for each template: one with
a singular DATA and ENT, and second with the plural DATA
and plural ENT.

To fill the templates, we iterate through each SoC verb and
each template and fill in the placeholders accordingly. If the
template has a placeholder for prepositions (PREP) and the
verb is a collect verb, we skip the template. We also skip
templates for “send”, “give”, and “provide” if the template
does not contain a placeholder for a preposition (i.e., T1,
Te6, T8, T10, T12, T14), as those sentences did not make
sense sence without specifying to whom the data is being
sent/given/provided. We generate two sentences for each tem-
plate when filling in the DATA and ENT placeholders to try to
account for syntactic ambiguity. The first sentence is with the
singular cases of DATA and ENT and the second sentence is
with the conjuncts of DATA and ENT. For example, consider
the first template and the verb “share.” In this case, we would
produce the sentences, “We may share your personal infor-
mation with advertisers.”, and “We may share your personal
information, demographic information, and financial informa-
tion with advertisers, analytics providers, and our business
partners.” In total, we generate 560 sentences, which are used
by PolicyLint to learn patterns from to identify sharing and
collection sentences.

5

C NER Performance

D Term Lists

Table 4: Sentence Generation Templates

1 ENT may VERB_PRESENT DATA We may share your personal information.

2 We may VERB_PRESENT DATA PREP ENT ‘We may share your personal information with advertisers.

3 We may VERB_PRESENT ENT DATA We may send advertisers your personal information.

4 We may VERB_PRESENT PREP ENT DATA ‘We may share with advertisers your personal information.

5 DATA may be VERB_PAST PREP ENT Personal information may be shared with advertisers.

6 DATA may be VERB_PAST Personal information may be shared.

7 DATA may be VERB_PAST by ENT Personal information may be shared by advertisers.

8 | We may choose to VERB_PRESENT DATA ‘We may choose to share personal information

9 | We may choose to VERB_PRESENT DATA PREP ENT ‘We may choose to share personal information with advertisers.

10 | You may be required by us to VERB_PRESENT DATA You may be required by us to share personal information.

11 | You may be required by us to VERB_PRESENT DATA PREP ENT | You may be required by us to share personal information with advertisers.
12 | We are requiring you to VERB_PRESENT DATA We are requiring you to share personal information.

13 | We are requiring you to VERB_PRESENT DATA PREP ENT We are requiring you to share personal information with advertisers.
14 | We require VERB_PRESENT_PARTIC DATA We require sharing personal information

15 | We require VERB_PRESENT_PARTIC DATA PREP ENT ‘We require sharing personal information with advertisers.

16 | We may VERB_PRESENT ENT with DATA ‘We may provide advertisers with your personal information.

Table 5: NER Performance: Comparison of spaCy’s stock
en_core_web_lg model versus our domain adapted model

Overall Data Objects Entities
Default Adapted Default | Adapted Default Adapted
Precision | 43.48% 84.12% - 82.20% 61.22% 86.75%
Recall 8.33% 81.67% - 79.84% 17.75% 85.21%
F1-Score 13.99% 82.88% - 81.00% 27.52% 85.97%

Table 6: Seed terms used for ontology construction

Ontology Seeds
Data Ontology information, personal information, non-personal
information, information about you, biometric in-
formation, financial information, device sensor in-
formation, government-issue identification infor-
mation, vehicle usage information
Entity Ontology | third party
Table 7: SoC verbs used by PolicyLint
Type Word
Sharing disclose, distribute, exchange, give, provide, rent,
report, sell, send, share, trade, transfer, transmit
Collection | access, check, collect, gather, know, obtain, re-
ceive, save, store, use

Table 8: First Party Synonyms

First Party Synonyms

we, I, us, me

our app, our mobile application, our mobile app, our application, our service, our website, our web site, our site

app, mobile application, mobile app, application, service, company, business, web site, website, site

17

