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Abstract

Smartphones and their applications have become a predomi-
nant way of computing, and it is only natural that they have
become an important part of financial transaction technology.
However, applications asking users to enter credit card num-
bers have been largely overlooked by prior studies, which
frequently report pervasive security and privacy concerns in
the general mobile application ecosystem. Such applications
are particularly security-sensitive, and they are subject to the
Payment Card Industry Data Security Standard (PCI DSS).
In this paper, we design a tool called Cardpliance, which
bridges the semantics of the graphical user interface with
static program analysis to capture relevant requirements from
PCI DSS. We use Cardpliance to study 358 popular applica-
tions from the Google Play that ask the user to enter a credit
card number. Overall, we found that /.67% of the 358 appli-
cations are not compliant with PCI DSS, with vulnerabilities
including improperly storing credit card numbers and card
verification codes. These findings paint a largely positive pic-
ture of the state of PCI DSS compliance of popular Android
applications.

1 Introduction

Mobile devices have become a primary way for users to ac-
cess technology, and for many users, it is the only way. The
most wide-spread mobile device platforms, namely Android
and iOS, are known for their vast application stores providing
applications that offer a wide variety of functionality. An
important subset of these applications takes payment informa-
tion from consumers, including those providing entertainment,
transportation, and food-related services.

The casual observer might expect that mobile apps offering
paid services and goods will always leverage the established
and centralized payment platforms provided by the mobile
OS (e.g., Google Pay and Apple Pay). These payment plat-
forms provide users a secure and trusted way to manage their
payment information (e.g., credit card numbers) without un-
necessarily exposing it to third parties. They do so by a) using

a virtual token that is linked to the actual credit card, and b)
handling both payment information and authorization outside
of the third-party application [3]. However, recent work [8]
reported that 4,433 of a random sample of 50,162 applications
from the Google Play were asking the user to enter credit card
information via text fields in the application UI. There are
many reasons why this may occur. For example, an appli-
cation developer may wish to offer an alternative if the user
does not want to use the Google or Apple payment system.
Alternatively, the application developer may wish to avoid
overhead charges from Google and Apple [39,40]. Whatever
the reason, the fact remains: applications are asking users to
enter credit card information.

The use of payment information makes these applications
distinct from the majority of mobile applications. Specifi-
cally, the PCI DSS [6] financial industry-standard mandates
that software systems protect payment information in specific
ways. While it is well known that mobile applications leak
privacy-sensitive information [9, 15, 16,23], fail to verify SSL
certificates [17,18,21,26,31,38], and misuse cryptographic
primitives [14,27], doing so while processing payment infor-
mation represents a significant violation.

Our work is motivated by the research question: do mo-
bile applications mishandle payment information? Answering
this question introduces several technical research challenges.
First, which PCI DSS requirements apply to mobile applica-
tions? PCI DSS v3.2.1 (May 2018) is 139 pages and applies
to a broad variety of payment systems. Second, how can
those requirements be translated into static program analysis
tasks? The analysis should avoid false negatives while mini-
mizing false positives. Third, how can the use of credit card
information be programmatically identified? Distinguishing
credit card text values requires understanding the semantics
of widgets in the user interface.

In this paper, we design a static program analysis tool
called Cardpliance that captures key requirements from PCI
DSS that are applicable to mobile applications. Cardpliance
combines recent work on static program analysis of Android
applications (i.e., Amandroid [19]) and Ul semantic inference



(i.e., UiRef [8]) to create novel checks for PCI DSS require-
ments. We use Cardpliance to study a set of 17,500 popular
free applications selected across all categories of Google Play.
Using the Ul semantic inference of UiRef [8], Cardpliance re-
duces this sample to 358 applications known to ask for credit
card information from the user. Cardpliance then identifies
40 applications with potential PCI DSS violations. After man-
ual decompilation and source code review, we confirmed 6
non-compliant applications.

Broadly, our empirical study leads to the following take-
aways. Overall, 98.32% of the 358 Android applications
that we analyzed passed Cardpliance’s PCI DSS tests, which
shows that the risk of financial loss due to insecure behav-
iors in mobile applications may not be as wide-spread as
predicted. In particular, we did not find any evidence of
applications sending payment information over the network
in plaintext, over vulnerable SSL connections, or insecurely
exposing the payment information via inter-component com-
munication channels. However, we identified 6 applications
that combined have nearly /.5 million downloads on Google
Play violating PCI DSS requirements by storing or logging
credit card numbers in plaintext (5/6), persisting credit card
verification codes (3/6), and not masking credit card numbers
when displaying (2/6). These applications are placing the
users and potentially their customers at unnecessary risk for
fraud due to their non-complying behaviors.

This paper makes the following contributions:

e We encode PCI DSS requirements for mobile applica-
tions into static program analysis rules. These rules are
largely captured using data flow analysis, but the exis-
tence of method calls on the corresponding control flow
paths play a key role.

o We study a set of 358 applications known to prompt the
user for credit card information. We find 6 applications
that violate PCI DSS requirements.

o We propose a set of best practices for mobile application
developers processing payment information. These sug-
gestions distill hundreds of pages to PCI DSS standards
specification into key areas relevant to mobile apps.

We note that an entire industry of products exists to enable
developers to identify individual PCI DSS violations in their
own code [9,19,22,25,30]. By contrast, Cardpliance is to our
knowledge the first system to identify violations across a sig-
nificant portion of an entire industry with no prior knowledge
of which apps might even handle credit card information. In
addition to helping Android application developers aware of
unintentional PCI DSS violations, Cardpliance can also be
used by Google to triage and investigate flaws in applications
as they are submitted to the Play Store. Google could also
show the output of Cardpliance in the Play Store’s developer
console.

The remainder of this paper proceeds as follows: Section 2
describes relevant security requirements from PCI DSS. Sec-
tion 3 overviews our approach to testing compliance with
these requirements. Section 4 describes the design and im-
plementation of Cardpliance. Section 5 uses Cardpliance to
study popular applications accepting credit card information.
Section 5.7 discusses threats to validity. Section 6 presents
a set of best practices for mobile application developers pro-
cessing payment information. Section 7 describes related
work. Section 8 concludes.

2 PCI Data Security Standard

In the early 2000s, major credit card companies faced a crisis
of payment fraud that was enabled by the widespread adop-
tion of online financial transactions. As a result, the Payment
Card Industry (PCI) released the first version of its Data Se-
curity Standard (DSS) in December 2004. PCI DSS [6] now
regulates all financial systems seeking to do business with
PCI members, which includes all major credit card companies.
This standard applies to all computing systems that accept
card payment, as well as those that store and process sensitive
cardholder data. It defines a series of security measures that
must be taken for such systems, including the use of firewalls
and anti-virus software.

Not all PCI DSS security measures apply to mobile appli-
cations installed on consumer devices. Based on our expertise
in mobile application security, we systematically reviewed
the 139 pages of PCI DSS version 3.2.1 to determine which
regulations apply. For example, mobile applications are pay-
ment terminals where a consumer may enter a credit card
information into either their own device or the device of a
merchant. In contrast, mobile applications are not used as
back-end payment processing systems. We then looked for
the different types of sensitive information referenced within
the standard. We found that PCI DSS distinguishes between
cardholder data (CHD) and sensitive account data (SAD),
which impacts software processing, as shown in Table 1.

Next, we reviewed the standard for requirements relating to
mobile applications. We identified the following six relevant
PCI DSS requirements:

Requirement 1 (Limit CHD storage and retention time):
PCI DSS Section 3.1 states:

Limit cardholder data storage and retention time to that
which is required for business, legal, and/or regulatory
purposes, as documented in your data retention policy.
Purge unnecessarily stored data at least quarterly.

Therefore, mobile applications should minimize the situations
when the credit card number and other CHD values are written
to persistent storage. Ideally, CHD is never written, but if
it is, the applications need a method to remove it. CHD
should also never be written to shared storage locations, e.g.,
SDcard in Android, as it may be read by other applications.



Table 1: Types of payment information relevant to credit cards

Information Type Pz::;;%: d Description
PAN CHD Yes Primary Account Number, 16 digits, on front of card.
Cardholder Name CHD Yes Cardholder’s name, on front of card
Expiry Date CHD Yes Card expiration date, displayed as MM/YY
Service Code CHD Yes 3 digit code, each digit has own service code assignment
Full Track Data SAD No Sensitive data stored on magnetic strip or on a chip
CAV2,CVC2,CVV2,CID | SAD No Three or four digit code on back of card
PIN SAD No Pass code that verifies the user during transactions

CHD = Card Holder Data; SAD = Sensitive Account Data

Applications also do not have the ability to delete contents
written to Android’s logcat logging infrastructure.

Requirement 2 (Restrict SAD storage): PCI DSS Section
3.2 states:

Do not store sensitive authentication data after autho-
rization (even if encrypted). If sensitive authentication
data is received, render all data unrecoverable upon
completion of the authorization process.

Therefore, SAD values such as full track data (magnetic-
stripe data or equivalent on a chip), card security codes (e.g.,
CAV2/CVC2/CVV2/CID), PINs and PIN blocks should never
be written to persistent storage, even if it is encrypted or in a
location only accessible to the application.

The standard states that data sources such as incoming
transaction data, logs, history files, trace files, database
schemes, and database contents should not contain SAD.
While we expect few mobile applications ask for full track
data, subsets of SAD are relevant. Furthermore, mobile ap-
plications should be careful not to include SAD in debugging
logs and crash dumps.

Requirement 3 (Mask PAN when displaying): PCI DSS
Section 3.3 states:

Mask PAN when displayed (the first six and last four dig-
its are the maximum number of digits you may display),
so that only authorized people with a legitimate business
need can see more than the first six/last four digits of the
PAN. This does not supersede stricter requirements that
may be in place for displays of cardholder data, such as
on a point-of-sale receipt.

The standard warns that the display of the full PAN on com-
puter screens, mobile UI, payment card receipts, faxes, or
paper reports can aid unauthorized individuals in performing
unwanted activities. Therefore, after the user enters the credit
card number, the application should mask it before displaying
(e.g., on a subsequent UI screen).

Requirement 4 (Protect PAN when Storing): PCI DSS Sec-
tion 3.4 states:

Render PAN unreadable anywhere it is stored — includ-

ing on portable digital media, backup media, in logs,
and data received from or stored by wireless networks.
Technology solutions for this requirement may include
strong one-way hash functions of the entire PAN, trunca-
tion, index tokens with securely stored pads, or strong

cryptography.

This requirement supplements Requirement 1 with restric-
tions specifically for the credit card number (PAN). If it is
written at all, some sort of protection is required.

Requirement 5 (Use secure communication): PCI DSS
Section 4.1 states:

Use strong cryptography and security protocols to safe-
guard sensitive cardholder data during transmission
over open, public networks (e.g. Internet, wireless tech-
nologies, cellular technologies, General Packet Radio
Service [GPRS], satellite communications). Ensure wire-
less networks transmitting cardholder data or connected
to the cardholder data environment use industry best
practices to implement strong encryption for authentica-
tion and transmission.

From the perspective of mobile applications, all network con-
nections should use TLS/SSL. Furthermore, the application
should not remove the server authentication checks, which
prior work [17] has identified is a common vulnerability in
mobile applications.

Requirement 6 (Secure transmission of PAN through
messaging technologies): PCI DSS Section 4.2 states:

Never send unprotected PANs by end-user messaging
technologies (for example, e-mail, instant messaging,
SMS, chat, etc.).

Again, specific additional restrictions are made for the credit
card number (PAN). That is, mobile applications should not
pass the PAN to APIs for sending SMS messages. Addi-
tionally, Android allows sharing data with other messaging
applications using its Intent message-based inter-component
communication (ICC). Such messages should be protected.
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Figure 1: Overview of Cardpliance

3 Overview

While many studies have investigated vulnerabilities in mo-
bile applications, we are unaware of studies focused on credit
card information. Such vulnerabilities represent PCI DSS
violations and hence are of significant importance. However,
programmatically investigating the relevant PCI DSS require-
ments is nontrivial, presenting the following key challenges.

e Credit card information is often collected via text input.
There is no clearly-defined API that identifies when the
user enters a credit card number. These inputs must be
identified and linked to control and data flow graphs.

o The relevant PCI DSS requirements are context-sensitive.
Simple data-flow analysis is insufficient. For example,
some types of credit card information can be stored or
transmitted if it is obfuscated.

o The relevant PCI DSS requirements are imprecise. The
requirements often refer to broad approaches to informa-
tion protection such as rending the PAN “unreadable.”
There are many ways in which developers can achieve
these goals.

Cardpliance addresses these challenges using a collection
of tailored static program analysis tests. Where possible, we
leverage existing open source projects that embody knowl-
edge gained from a decade of mobile application analysis.
Specifically, we build upon UiRef [8] to infer the semantics
of text input and Amandroid [19] (also called Argus-SAF) to
perform static data flow analysis. Our analysis also leverages
concepts from MalloDroid [17] to identify SSL vulnerabili-
ties and StringDroid [41] for identifying the URL string used
to make network connections. Combining these existing tech-
niques to create specific PCI DSS checks requires careful
construction and represents a unique contribution.

Figure | provides a high-level overview of Cardpliance’s
approach to identifying PCI DSS violations in mobile applica-
tions. The first step is to identify which applications ask users
to enter credit card information. While we build upon UiRef
for user interface analysis, the analysis requires injecting a
code executing the repackaged application. This process is
too heavyweight for application discovery. Therefore, we
use a two-phase application filter, first using a lightweight

keyword-based search of the strings used by the application,
then using UiRef to confirm that the application actually asks
the user to enter credit card information (e.g., the terms could
have been used in some other context).

The next phase is the Data Dependence Graph (DDG) ex-
traction. A key feature of Amandroid is to produce graphs
upon which different static analysis tasks can be performed.
This approach encapsulates traditional static program analysis
within the core Amandroid tool and allows users of Aman-
droid to focus on their goals as graph traversal algorithms.
However, we found that the latest version of Amandroid did
not include all of the program contexts that were needed for
our PCI DSS tests. First, we use information from UiRef
to annotate UI input widgets as being related to credit card
information. Second, we enhance how Amandroid handles
onClickListener callbacks to correctly track data flows from
Ul input.

The six PCI DSS tests capture the relevant requirements
described in Section 2. Described in detail in Section 4, these
tests consider the different uses of cardholder data (CHD)
and sensitive account data (SAD) listed in Table 1. Each test
defines sets of sources and sinks for Amandroid’s taint analy-
sis; however, the tests require context beyond traditional taint
analysis. First, Amandroid uses method signatures as sources
and sinks, whereas Cardpliance only considers a subset of
method calls that are parameterized with specific concrete
values (e.g., Ul widget references from UIRef). Second, three
of the six tests are designed to not raise an alarm if all paths
from a specific source to a specific sink invoke a method that
makes the data flow acceptable (e.g., masking or obfuscat-
ing the credit card number). Therefore, Cardpliance includes
additional traversal of the DDG.

Finally, due to the imprecision of PCI DSS, several of
the tests are inherently heuristic. In such cases, we erred on
the side of being security conservative, preferring false posi-
tives over false negatives and invalidating the false positives
through manual inspection. Therefore, Cardpliance serves
as a tool to drastically reduce the effort of a manual auditor,
providing key information necessary to make a certification
determination. Section 5 describes our experiences manu-
ally reviewing flagged applications with the JEB decompiler.
Note that we did not perform dynamic analysis of the flagged
applications because many of them required social security
numbers to register for accounts or for us to be in a physical
location to test (e.g., road toll applications).

4 Cardpliance

Android application analysis is a well-studied problem. Open-
source analysis tools such as FlowDroid [9], Amandroid [19],
and DroidSafe [22] capture much of Android’s runtime com-
plexity, including application lifecycles and callbacks from
code executing system processes. We chose to build on top



of Amandroid, also called Argus-SAF,l because it a) is being
actively maintained, b) has a design that is easy to extend,
and c) outputs convenient graphs for use by novel analysis.
This section is split into two parts: First, we explain key con-
cepts in Amandroid and how we configured it for our analysis.
Second, we describe our tests that capture the relevant PCI
DSS requirements described in Section 2. This second part
captures a key technical contribution of this paper.

4.1 DDG Extraction

The Cardpliance tests are graph queries on Amandroid’s Data
Dependence Graph (DDG). Amandroid performs flow- and
context-sensitive static program analysis on .apk files. It
analyzes each Android component (e.g., Activity component)
separately and then combines the per-component analysis
to handle inter-component communication (ICC). As such,
program analysis timeouts are defined at the component level
(as we discuss in Section 5, we use a timeout of 60 minutes).

Amandroid is primarily focused on data flow analysis. It
calculates points-to information for each instruction in the
control flow graph, storing it in a Points-to Analysis Results
(PTAResult) hash map. It also keeps track of ICC invoca-
tions in a summary table (ST). Amandroid then produces
an Interprocedural Data Flow Graph (IDFG) for each com-
ponent, which combines the Interprocedural Control Flow
Graph (ICFG) with the PTAResult for that component. It
then generates an Interprocedural Data Dependency Graph
(IDDG), which contains the same nodes as the IDFG, but the
edges are the dependencies between each object’s definition
to its use. Finally, a DDG for the entire application is created
by combining each component’s IDDG and the ST.

Amandroid uses the DDG to perform taint analysis. Given
a set of taint sources and taint sinks, Amandroid marks the
sources and sinks in the DDG and computes the set of all
paths between them. The list of paths from sources to sinks is
stored in a Taint Analysis Result (TAR) structure. Amandroid
allows the user to define sources and sinks via text strings of
method signatures in a configuration file.

Cardpliance analyzes how applications handle credit card
information entered by the user into text fields. Applications
access this text via the TextView.getText () method. How-
ever, Cardpliance needs to determine which TextView objects
correspond to the Ul widgets that collect different types of
credit card information. To acquire a TextView object, the ap-
plication calls Activity.findViewById(R.id.widget_name),
where R.id.widget_name is a unique integer managed by the
application’s resource R class. Therefore, Cardpliance uses
Activity.findViewById(int) as a taint source. The analy-
sis will taint the returned TextView and the subsequent string
from TextView.getText (). Furthermore, since the DDG con-
tains points-to information, the PCI DSS tests can use Aman-
droid’s ExplicitValueFinder.findExplicitLiteralForArg-
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s () method to determine the integer value passed to the taint
source. It then uses the resource IDs of credit card informa-
tion widgets identified by UiRef [8] to determine the types of
information flowing to each sink.

However, applications frequently call Activity.findvi-
ewById() to assess many different UI widgets. Therefore,
simply defining it as a taint source will cause Amandroid’s
taint analysis to needlessly compute taint paths for many
irrelevant sources. To address this problem, Cardpliance
implements a custom source and sink manager that refines
the taint sources to just those Activity.findViewById(int)
instructions that are passed an integer in a list precomputed by
UiRef. This process involves using the PTAResult hash map
while marking taint sources. In doing so, we significantly
reduce the time to analyze applications.

Additionally, since one of Cardpliance’s tests uses View.s-
etText () as a taint sink, we perform a similar optimization
in the custom source and sink manager. In this case, we
backtrack in the DDG to the definition site of the view object
and identify the corresponding call to Activity.findViewB-
yId(int). We then similarly resolve the integer resource ID.
If the ID is in a predefined list (defined via a heuristic for the
test), the call to View.setText () is defined as a taint sink.

Finally, we had to patch Amandroid’s control flow analysis
to properly track the use of view objects obtained in OnC-
lickListener callbacks. We found that many applications
declare the onClickListener of a View as an anonymous inner
class. In such cases, Amandroid did not capture the data flow
initiated by the button click. We fixed this issue by adding a
dummy edge from the point where the OnClickListener was
registered to the entry point of the corresponding 0nClickLi-
stener.onClick () method.

4.2 PCI DSS Tests

At a high level, Cardpliance uses Amandroid’s taint analysis
result (TAR) to identify potential PCI DSS violations. How-
ever, the TAR does not consider context at the sources and
sinks, or all different paths between the sources and sinks.
Cardpliance uses the DDG to identify specific instructions
as sources and sinks based on constant values available from
the PTAResult hash map. It then calculates all paths between
those specific source and sink instructions, determining if spe-
cific conditions occur (e.g., calling an obfuscation method).

4.2.1 Analysis Approach

The DDG is a directed acyclic graph (V,E) where the set
of vertices V are program instructions and the set of edges
E represent def-use dependencies between vertices (v;,v;).
We say there exists a path between v and v (denoted v ~~
vg) if there is a sequence of edges (Vs,Vsy1), (Vst+1,Vst2)s
<o (Vi—1,vk). We refer to a specific path p from v, to v; as

4
Vg ~ V.


http://pag.arguslab.org/argus-saf

Each PCI DSS test is defined with respect to instructions
invoking three sets of methods: source methods (), sink meth-
ods (K), and required methods (R). S and K are traditional
sources and sinks for taint analysis. Whereas Amandroid’s
sources and sinks are method signatures, some of Cardpli-
ance’s sources and sinks are context-sensitive. For example,
an instruction that calls Activity.findviewById (int) is only
a source if the argument is an integer from a list of resource
IDs identified by UiRef as requesting credit card information.

In contrast to S and K, R places requirements on the data
flow path. Informally, R defines a set of methods that should
be called on the data flow path (e.g., a string manipulation
method that could mask characters). If no methods from R
exist on the path, then a potential violation is raised.

We now describe the general template used by each test to
generate sets of potential violations. For simplicity, we say
that instruction v € V is in S, K, or R if the instruction v calls
a method in one of those sets, potentially parameterized with
the correct constant values. Then, for vy, v, v, in V, the test
produces paths as potential violations as follows:

{(vg 2 Vi) [vs € S,vik € K, vy 2 vk AN(Avr € plv, €R)}

That is, even if vg ~~ vy, it is not a violation if all paths include
an instruction v, that is in R. Note that not all tests use R and
therefore the logic for these tests skips the second term in the
conjunction. However, this is logically equivalent to R = 0,
which will cause the term to always be true.

4.2.2 Test Implementation

The remainder of this section describes our six PCI DSS
tests with respect to S, K, and R. In doing so, we reflect on
the relevant requirements described in Section 2. We also
describe implementation-specific considerations for each test.
An overview of the tests is provided in Table 2.

Test T1 (Storing CHD): Requirement 1 in Section 2 states
that storage of cardholder data (CHD) should be limited, and
if it is stored, there should be a mechanism to delete if af-
ter a period of time. Determining all of the ways in which
persistent data can be deleted is not practical to detect using
static program analysis. Therefore, Test T1 takes a security-
conservative approach and identifies whenever CHD is written
to persistent storage. As such, Test T1 is more of a warning
than a violation of PCI DSS. However, it is useful as a coarse
metric and can bring potentially dangerous situations to the
attention of a security analyst.

Test T1 captures a key program analysis primitive that is
needed by the other tests: data flow analysis from specific UI
inputs. Amandroid provides a Taint Analysis Result (TAR)
structure that contains a superset of all of the paths identified
in all of the tests. Test T1 filters the TAR based on the sources
and sinks listed in Table 2. Note that Test T1 only considers
the sources that call Activity.findViewById(int) with re-
source IDs corresponding to CHD. We further reduce the text

input source to just the credit card number (PAN), as there is
the potential for ambiguity when identifying the other fields
(e.g., cardholder name vs. another name field). The custom
source and sink manager described in Section 4.1 only limits
the analysis to credit card related data, which includes both
CHD and SAD. Therefore, we again use Amandroid’s Expli-
citValueFinder, but within a different phase of the analysis.
The data persistence method (DPM) sink methods listed in
the table do not require special consideration. Once these con-
crete sources and sinks are identified, we traverse the DDG
to identify all paths between them.

Test T2 (Storing SAD): Requirement 2 in Section 2 states
that sensitive account data (SAD) should never be written
to persistent storage, including logs. From the mobile appli-
cation perspective, the only SAD that users will enter into
text fields is the three or four digit CVC code written on the
physical card. Therefore, Test T2 only needs to consider Ac-
tivity.findViewById(int) sources that are passed resource
IDs corresponding to CVC-related fields. The remainder of
the analysis is identical to Test T1. Note that unlike Test T1,
the existence of a data flow path directly represents a PCI
DSS violation.

Test T3 (Masking Credit Card Number): Requirement 3
in Section 2 states that the only time the application should
display the full credit card number (PAN) is when the user
is entering it in the text field. All other times the credit card
number is displayed, it should be masked, showing at most
the first six and last four digits of the number.

Test T3 requires additional sophistication in the static pro-
gram analysis algorithm. First, it includes R, the set of re-
quired methods. Recall that a violation does not occur if all
paths from the sources to the sinks include an instruction that
invokes a method in R. In this case, we define a set of PAN
masking methods (PMM), listed in Table 2, that represent
different ways in which the application developer may have
masked the credit card number. While the developer may
choose to use other string manipulation methods, this set is
conservative and will raise an alarm for manual review by a
security analyst. Of course, this set can be easily expanded as
additional string manipulation methods are discovered.

Second, Test T3 considers not only textual user input as
taint sources, but also input from the network. For example,
an application may retrieve the credit card number from the
server and display it for the user. Such cases should also be
masked. However, in this case, it is nontrivial to detect which
input data is the credit card number. While the semantics of
JSON key-value fields could potentially be used [28, 34], we
elected to use a simpler heuristic that filters tainted paths at
the sink. Specifically, we extract a list of all resource IDs of
UI widgets that exist on a Ul screen that also contains the
text “Credit Card.” Our intuition is that mobile application
Ul screens are generally purpose-specific and the other dis-
played information is likely related. This classification allows



Table 2: PCI DSS tests defined by source (S), sink (K), and required (R) methods on data flow paths in the DDG.

Test | Identifies S K R

T1 Storing CHD Activity.findViewById (ID_CC) DPM -

T2 | Storing SAD Activity.findViewById (ID_CVC) DPM -

T3 | Not Masking Credit Card | Activity.findViewById(ID_CC), View.setText () PMM
Number URLConnection.getInputStream()

T4 | Storing Non-Obfuscated | Activity.findViewById(ID_CC) DPM OM
Credit Card Number

T5 Insecure Transmission

Activity.findViewById (ID_CC)

OutputStreamiiriter.write(), -
OutputStream.write ()

T6 | Sharing Non-Obfuscated
Credit Card Number

Activity.findViewById (ID_CC)

Intent.putExtra(), OM
SmsManager.sendTextMessage ()

Data Persistence Methods (DPM) = java.io.OutputStream.write(), java.io.FileOutputSream.write(), java.io.Writer.write(), java.lang.System.o-
ut.println(), android.content.SharedPreferencesEditor.putString(), android.util.Log.i(), android.util.Log.d()
PAN Masking Methods (PMM) = java.lang.String.replace(), java.lang.String.substring(), java.lang.String.concat (), java.lang.StringBuilde-

r.append ()

Obfuscation Methods (OM) = javax.crypto.Cipher.update (), javax.crypto.Cipher.updateAAD (), javax.crypto.Cipher.doFinal (), java.security.Me-

ssageDigest.digest (), java.security.MessageDigest.update ()

the static program analysis to only consider View.setText ()
methods as taint sinks if they correspond to objects that were
retrieved using findviewById () and a resource ID from that
set. As mentioned in Section 4.1, we leverage the Explicit-
ValueFinder within the custom source and sink manager to
perform this refinement. We, therefore, leverage the view.se-
tText () sinks in Amandroid’s TAR structure, knowing that
they have been refined as such.

Once Test T3 has filtered the TAR with respect to the
sources and sinks described above, it computes all paths be-
tween them using the DDG. We then remove paths that
contain a method from R. The resulting set of paths are po-
tential violations of the PCI DSS and are made available for
manual review.

Test T4 (Storing Non-Obfuscated Credit Card Number):
Requirement 4 in Section 2 states that the credit card number
(PAN) should always be protected if it is stored by the mobile
application. The PCI DSS standard has some flexibility in
how the number is protected, but it offers suggestions includ-
ing one-way hash functions and cryptography. Requirement 4
refines Requirement 1 specifically for the credit card number,
and since our Test T1 only considers the credit card number,
and not the other CHD values, it might seem that both Test
T1 and Test T4 are not needed. However, we wanted to in-
clude both, because Test T1 will capture all cases when the
credit card number is written to persistent storage, whereas
Test T4 only raises an alarm when there is not an obfuscation
method on the data flow path. Put another way, Test T1 is
designed to be a warning for closer inspection, whereas Test
T4 is designed to detect violations.

Given the similarity to Test T1, Test T4 follows the same
implementation pattern. However, Test T4 includes a set R
of required obfuscation methods (OM), as listed in Table 2.
These methods include calls to common encryption and mes-
sage digest functionality in Java, as listed on the Android

developer’s website [2]. Similar to Test T3’s PAN masking
methods, we do not seek to enumerate all possible cryptog-
raphy libraries. Nonstandard libraries should be reviewed
and can potentially be added to the list in the future. For the
Cipher.doFinal () method, we validate that the Cipher object
is initialized with an ENCRYPT_MODE. In the future, additional
cryptography checks [14,27] could be incorporated. Note that
false negatives resulting from this limitation of Test T4 would
still raise a warning for Test T1, which reports any write to
storage, obfuscated or not. Finally, Test T4 uses the same
strategy as Test T3 for ensuring all paths from the filtered
sources and sinks contain a method from R.

Test TS (Insecure Transmission): Requirement 5 in Sec-
tion 2 states that mobile applications should always use TL-
S/SSL when transmitting cardholder data. There are two ways
in which an application can fail to properly use TLS/SSL:
(1) send data via HTTP URLSs, (2) invalidate certificate checks
when sending data via HTTPS URLSs.

As shown in Table 2, Test TS uses OutputStreamiiriter.w-
rite() and OutputStream.write () as taint sinks to filter the
TAR. However, these sinks may also be used for file writes.
Unfortunately, the URLConnection object used to create the
output stream will not be on the tainted path for the credit
card number (so R cannot be used). Therefore, we separately
walk backward on the DDG from the taint sink to find the
URLConnection object used to create the output stream object.
We then use Amandroid’s ExplicitValueFinder to determine
the argument passed to the corresponding URL initialization
method (URL.init (String). We then determine if the string
is an HTTP or HTTPS URL. If an HTTP URL is used, an
alarm is raised.

If an application has an HTTPS URL as a taint sink, we
also check if the application contains a vulnerable TLS/SSL
configuration. To do so, we leverage Amandroid’s existing
API Misuse module, which has a configuration option for



COMMUNICATION_LEAKAGE. Specifically, this check looks for
insecure implementations of SSLSocketFactory and a Tru-
stManager that uses the ALLOW_A11_HOSTNAME_VERIFIER flag.
Note that this analysis is not context-sensitive to a specific
taint sink, as these options are often set globally for an appli-
cation. Therefore, there is a possibility for false positives if
an application uses different SSL configurations for different
network connections.

Test T6 (Sharing Non-Obfuscated Credit Card Number):
Requirement 6 in Section 2 states that credit card numbers
should be protected if they are shared outside of the applica-
tion. Therefore, we consider both SMS APIs and Android’s
inter-component communication (ICC) mechanism that al-
lows execution to span applications. Similar to Test T4, this
test determines if all paths from sources and sinks include a
call to an obfuscation method, as shown in Table 2.
Identifying taint sinks for SMS is straightforward due
to Android’s runtime API SmsManager.sendTextMessage ().
Identifying ICC taint sink is more complex. First, ICC is com-
monly used within an application. To simplify the analysis,
we assume that Intent messages with explicit destinations
(i.e., specify the exact target component name) are used for
ICC within an application, and implicit destinations (i.e., use
“action” strings) are used for ICC between applications. Sec-
ond, the Intent objects used for ICC are populated in steps.
We use Intent.putExtra() as a taint sink filter for the TAR.
We then backtrack the DDG to find the Intent object creation
and use Amandroid’s ExplicitValueFinder to identify if it is
an implicit or explicit Intent. If it is an implicit Intent and
the action value is ACTION_SEND, we use the Intent.putExt-
ra() call as a taint sink, as this is the action string used to
share information between applications. Finally, we follow
a similar process as Test T4 to ensure that all paths between
the sources and sinks include a required obfuscation method
from R. Paths failing this requirement will raise an alarm.

5 PCI DSS Compliance Study

Our primary motivation for creating Cardpliance was to ana-
lyze whether mobile applications are mishandling payment
information. The goal of this study is to gauge the impact
of PCI DSS non-compliance on real-world users. In this sec-
tion, we use Cardpliance to analyze popular applications from
Google Play for potential PCI DSS violations and present
case studies based on our findings.

As Cardpliance uses static analysis to vet application’s com-
pliance of PCI DSS requirements, it is subject to the same
limitations as static analysis. In particular, static analysis
may provide an over-approximation of application behaviors
that may result in false alarms. Therefore, we manually vali-
date data flows that Cardpliance flags as potential PCI DSS
violations to determine whether the application is actually
violating PCI DSS requirements. Note that the goal of val-

idation is to determine whether the application is violating
PCI DSS requirements, not to comprehensively determine
whether every data flow identified by static analysis is a true
positive or false positive. Therefore, a true positive denotes
that the application contains a PCI DSS violation while a false
positive denotes that none of the data flows flagged by static
analysis were valid due to errors in the underlying tooling.

5.1 Dataset Characteristics

To select our dataset, we downloaded the top 500 free appli-
cations (“top_selling_free” collection) across Google Play’s
35 application categories in May 2019, which resulted in an
initial dataset of 17,500 applications. To determine which ap-
plications request payment information, we disassembled the
dataset and performed a keyword-search on the resource files
for terms that describe payment card numbers (e.g., credit
card number, debit card number, card number). The list of
terms was obtained from the synonym list in UiRef [8] for
“credit card number.”” This keyword-based triaging flagged
1,868 applications as potentially requesting credit card infor-
mation, which reduced the dataset by 89.3% (15,632/17,500).
Note that this triaging may provide an under-approximation
of the total number of applications requesting credit card num-
bers due to the comprehensiveness of the keyword-based list.
However, since this keyword list was used by prior work [8]
to identify 4,433/50,162 (8.83%) applications in Google Play
were asking users for credit card information, we believe it
is suitable for our study. We leave it as future work to con-
struct a comprehensive multi-language vocabulary of terms
that refer to credit card numbers.

As discussed previously, simply containing a string that
matches a credit-card related keyword does not imply the
application accepts credit card numbers from the user. There-
fore, we use UiRef to determine when an application takes
credit card numbers as input. We ran UiRef on the refined
dataset and found that 807 applications failed during reassem-
bly due to errors in ApkTool.” UiRef failed to extract layouts
from an additional 110 applications. Of the remaining 951 ap-
plications, UiRef identified that 442 applications containing
input widgets that request credit card numbers.

We ran Cardpliance on the 442 application that request
payment information. We performed the analysis on a virtual
machine running Ubuntu 18.04 on the VMware ESXi 6.4
hypervisor with an Intel(R) Xeon(R) Gold 6130 2.10GHz
machine with 320 GB RAM and 28 physical cores. We con-

2Keyword list: credit card number, card number, cardnumber, credit /
debit card number, credit or debit card number, payment card number, credit
card number on our order form, credit card number on our registration form,
credit-card number, credit / debit card number, credit or debit card number,
customer credit card number, credit card / debit card number, credit card
account number, credit and debit card number, debit card number, valid credit
/ debit card number, digit card number, cc number, credit card, debit card,
master card, mastercard

3https://ibotpeaches.github.io/Apktool/
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Figure 2: Runtime increases gradually for 358 apps sorted
according to increasing component number, it saturates near
the 170th app which had 40 components

figured Cardpliance to run 15 applications in parallel and set
a 60-minute timeout per application component. If a time-
out occurred when analyzing a component, we discard the
results for the entire application to avoid partial results. In
total, Cardpliance successfully analyzed 80.99% (358/442)
of the triaged application dataset. Of the 19.01% (84/442)
applications that failed analysis, 3.84% (17/442) applications
contained components that exceeded the timeout and 15.15%
(67/442) applications could not run due to errors in the under-
lying static analysis framework Amandroid.

Finding 1: At least 2.5% of popular free Android applica-
tions on Google Play directly request payment information.
As discussed above, we used a lightweight heuristic to iden-
tify which applications were mentioning credit card numbers
and then used UiRef to resolve semantics. We found that
442 applications contain input widgets that directly request
payment information from users (i.e., credit card numbers).
This reduction in the scope of analysis makes deploying the
deeper and more time-consuming static analysis checks pro-
vided by Cardpliance feasible at scale. Note that this is a
conservative lower-bound estimate, as we could not analyze
917 applications due to errors in ApkTool and UiRef.

Finding 2: Cardpliance can analyze an application with a
mean and median runtime of 334 minutes and 179 minutes,
respectively. Figure 2 plots the runtime versus the number
of components within an application. Note that the x-axis
consists of the 358 applications sorted in ascending order
based on the number of components within the application.
The component counts within applications ranged from 0 to
315 components where 54 was the average number of com-
ponents per application. As shown in Figure 2, an increased
number of components within an application generally re-
sulted in a longer runtime. Further, it saturates after the 170th
application where there were 40 components. The mean and
median runtime for applications was 334 and 179 minutes per
application, respectively.

Cardpliance’s runtime significantly increased over the stock
version of Amandroid [19] due to the inclusion of frequently
used user input sources and sinks, such as Activity.findvVie-
wById(int) and View.setText (). For example, an application

may only have the source TelephonyManager.getDevicelID-
() once within the application, but it may likely have the
source Activity.findViewById(int) multiple times through-
out the application, which significantly increases the number
of sources that require tracking. Therefore, in order to scale
Cardpliance to an entire market, a lightweight keyword-based
filter is required (as shown in Figure 1). Note that if the filter
is not comprehensive, non-compliant applications may not be
discovered. We discuss this limitation further in Section 5.7.
Finally, as discussed above, Cardpliance successfully an-
alyzed 358 applications. Those 358 applications spanned
32 application categories with the majority coming from the
FOOD_AND_DRINK (51), SHOPPING (43), FINANCE
(39), and MAPS_AND_NAVIGATION (37). The average
download count for these applications was 1.25 million down-
loads and an average rating of 3.8 stars out of 5. The most
popular application Wish- Shopping Made Fun (con. contex-
tlogic.wish) in the group had over 100 million downloads.
The dataset consisted of other widely used applications, such
as Lyft (me.lyft.android), CVS Caremark (com.caremark.-
caremark), and the WWE application (com.wwe.universe).

5.2 'Validation Methodology

We opt for manual code review instead of manually running
the application due to complexities of reaching screens that re-
quest payments (e.g., creating accounts that require disclosure
of sensitive data, requiring referral codes, or relying on an
existing balance/debt). The manual code review for validation
was performed by one student author of this paper, who has
more than 6 years of both academic and industrial experience
programming Java and developing Android applications. For
each candidate application flagged by Cardpliance, we begin
by decompiling the application with the JEB decompiler [37]
to obtain the source code. We then group the data flows that
were marked as potential PCI DSS violations by the PCI DSS
requirement that it violated from Section 4).

The goal of validation is to verify that the data flow actually
occurs within the code and was not a false alarm due to the
imprecision of the underlying tooling. Note that for all of
the validation checks, we stop verification if we discover that
the result is a false alarm and begin validating the next data
flow within the PCI DSS requirement group. If all of the data
flows within the PCI DSS requirement group are erroneous,
we mark the application as a false positive for that PCI DSS
requirement group. However, if we successfully validate the
data flow, we mark the application as containing a PCI DSS
violation and start analysis on the next PCI DSS requirement
group for that application.

We begin by validating whether the semantics linked to the
input widget of the data flow was correctly resolved by UiRef.
We start at the source of the data flow (e.g., Activity.findvi-
ewById(int) method) and resolve the integer parameter of the
method invocation to the resource identifier in the R.java file



of the source code. We identify in the input widget referenced
by the resource identifier within the source code and vali-
date that UiRef made the correct resolution of semantics (i.e.,
credit card number, CVC). If UiRef was incorrect, we mark
the data flow as erroneous and begin validating the next data
flow for that requirement group. If UiRef resolved the correct
semantics, we continue the following validation process.

Next, we trace through the source code from the source of
the data flow to the sink to determine that the data flow exists
within the source code. For example, if the data flow denotes
that non-obfuscated credit card numbers are being stored, we
verify that the data retrieved from the input widget accepting
credit card numbers is actually written to disk without being
encrypted or through some other obfuscation library. If the
data flow does not occur within the source code due to impre-
cisions of static analysis, we mark it as an error and continue
analysis as discussed above. For example, we found that the
Context object of the Activity.findViewById (int,Context)
method was frequently tainted and lead to imprecision.

Finally, for validating potential SSL vulnerabilities that
lead to insecure transmission, we searched for SSLSocket-
Factory and TrustManager classes within the source code
and manually checked whether the implementation was per-
forming improper certificate validation. We then searched
for the use of those classes throughout the source code and
determined whether payment information was sent over con-
nections using these vulnerable classes.

5.3 Compliance: The Good

In this section, we report the positive findings from our anal-
ysis of the 358 applications analyzed by Cardpliance. We
believe that these findings provide significant value and in-
sight to the community.

Finding 3: Around 98.32% of the 358 applications pass Card-
pliance’s PCI DSS compliance tests. Out of the 358 appli-
cations, Cardpliance identified that 318 applications did not
violate any of the PCI DSS compliance checks. After man-
ual validation of Cardpliance’s findings, we found that 352
applications in total were not violating any PCI DSS check
that we modeled. This result in itself is surprising due to
the vast amount of prior research that highlights the poor
state of Android application security [9, 15, 16,24]. The fact
that our tool reporting 98.32% of applications in our dataset
handling payment information are maintaining these data se-
curity standards shows that the risk of financial loss due to
insecure behaviors in mobile applications might not be as
wide-spread. Further, as the majority of applications seem to
be handling payment information correctly, it demonstrates
that securely processing payment information and meeting
PCI DSS requirements within a mobile application is largely
an obtainable effort.

Finding 4: Applications are correctly using HTTPS instead
of HTTP to transmit payment information. Cardpliance did

not identify any applications that transmitted payment infor-
mation insecurely in plaintext over HTTP in Test T5. The
adoption of HTTPS over the insecure HTTP is a great move
in the right direction, as a prior study [17] showed that 93.4%
of URLs in Android applications were HTTP and another
study showed poor SSL adoption in financial applications in
developing countries [33]. The fact that we did not find any
applications sending payment information over HTTP means
that the effort to push HTTPS adoption has been working
for transmitting sensitive information, such as payment infor-
mation. Note that as Cardpliance is a static analysis-based
approach, we cannot determine whether payment information
is sent insecurely if the destination URLSs are not present in the
code or resource files. This limitation is shared by practically
all prior work on this same problem [17,33].

Finding 5: Applications are correctly performing hostname
and certificate verification when sending payment information
over SSL connections. Cardpliance identified 20 applications
that were handling payment information and also contained
vulnerable SSL implementations within their codebase. Out
of these 20 applications, we did not find evidence that any pay-
ment information was sent over vulnerable SSL connections
during manual verification. The majority of the code for the
vulnerable SSL implementation was dead code or contained
build flags that disabled that functionality. Overall, this find-
ing demonstrates the positive impact on Android application
security by prior research on SSL misconfigurations [17] and
Google’s efforts.”*

Note that we did find that the Harris Teeter application
(com.harristeeter.htmobile) sends profiling and usage data to
Dynatrace over a vulnerable SSL connection, which results
from a misconfiguration when interfacing with the Dyna-
trace library. This issue of sending non-payment information
indicates that vulnerable SSL problems still exist. As recom-
mended in Section 6, developers should never modify ssL.So-
cketFactory or TrustManager within the application. Further,
third-party libraries that applications are including should
also be vetted, as they can override the TrustManager used by
the default sSLSocketFactory, which could result in all SSL
connections within the application becoming vulnerable.

Finding 6: Applications are not insecurely sharing payment
information via SMS or with other applications via ICC chan-
nels. Cardpliance did not identify any applications transmit-
ting payment information to other applications using SMS
APIs or implicit intents without obfuscating the data in Test
T6. Prior research [23,24] highlighted that a wide range of
private data was being leaked through ICC, such as location
data and device identifiers. In this work, we demonstrate that
credit card numbers are not being insecurely exposed through
the use of implicit intents. One potential mitigating factor
may have been that Android banned binding to services with
implicit intents since Android 5.0 [1].

“https://support.google.com/faqgs/answer/6346016?hl=en
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Table 3: Applications with Validated PCI DSS Violations

App Name Package Name Downloads | T1 | T2 | T3 | T4
Credit Card Reader com.ics.creditcardreader 500K+ X X
FastToll Illinois com.pragmistic.fasttoll 10K+ X | X X
Bens Soft Pretzels com.rt7mobilereward.app.benspretzel | 10K+ X | X [ X | X
The Toll Roads com.seta.tollroaddroid.app 100K+ X | X X
ConnectNetwork by GTL | net.gtl.mobile_app 1M+ X

Peach Pass GO! com.srta.PeachPass 50K+ X X

5.4 Non-Compliance: The Bad and the Ugly

After validation of the 40 applications that Cardpliance
flagged as having potential PCI DSS violations, we found
that 6 applications were non-compliant with PCI DSS require-
ments. Table 3 lists all of the applications that contain PCI
DSS violations. While the fact that only /.67% of the 358
credit card number collecting applications are non-compliant
with PCI DSS requirements does not seem surprising in itself,
the fact that any applications are non-compliant is trouble-
some. The impact of non-compliance is substantial to both
the end-users, app developers, payment processors and is-
suing banks. For end-users, non-compliance may result in
significant financial loss due to fraud if payment information
is insecurely exposed. For companies, non-compliance can
result in damage to public perception and also significant fi-
nancial loss up to $5,000 to $100,000 a month depending on
the size of the business and degree of non-compliance [5].
While identifying 6 PCI DSS violations out of 40 applica-
tions is not ideal, we narrowed the scope of analyzing PCI
DSS compliance from manually validating 17,500 applica-
tions to only requiring manual validation of 40 applications.
Further, the main source of imprecision was due to the data
flow analysis in Amandroid. For example, we found that the
context object of the Activity.findViewById(int,Context)
method was frequently tainted and became a large source of
imprecision. Further, the context insensitive analysis of SSL
vulnerabilities also contributed to the low precision. Future
work can improve the precision of the data flow tracking in
static analysis tooling to reduce false alarms. The remainder
of this section highlights our findings on the PCI DSS viola-
tions that Cardpliance identified within applications and case
studies from our analysis.
Finding 7: Applications totaling over 1.5 million downloads
are not complying with PCI DSS regulations. After verifica-
tion, we found that 6 applications were non-compliant with
the PCI DSS requirements. These violations were distributed
across applications from popular merchant applications, toll-
paying apps, and communication networks. The impact of
these violations even reached vulnerable populations of users,
such as the application for ConnectNetwork, which is an ap-
plication that allows users to call and send messages to family
and friends incarcerated within a prison. In total, the down-
load counts of these 6 applications reached around /.5 million

downloads. Therefore, up to /.5 million users were poten-
tially impacted by the PCI DSS violations that Cardpliance
identified and may be at risk for potential fraud. Findings 8-10
discuss each of the PCI DSS violations in depth.

Finding 8: Applications are storing credit card numbers
without hashing or encrypting the data. Figure 3 shows that
Cardpliance identified that 20 applications were persisting
credit card numbers in files, shared preferences, and device
logs (T1) with 19 of those applications not hashing or encrypt-
ing the data (T4). After manual validation, we found 5 out of
those 20 (25%) applications were actually persisting credit
card numbers and none of them were providing adequate pro-
tection of the data as defined by PCI DSS requirements by
hashing or encrypting it. While we did not verify whether the
location that the data is being saved was accessible to external
applications, the fact that data is being saved in plaintext is a
security risk. For example, consider the case where a user’s
device is compromised by a malicious application that obtains
root access to the device. Even if the application stores the
data within its private directory that is traditionally protected
by UNIX file system privileges, the malicious application
can simply read it due to its escalated privileges. Therefore,
all credit card numbers should be either hashed or encrypted
before storing. If encrypting, the application should also use
the Android Keystore to protect access to the cryptographic
key.

Although PCI DSS requirements allow storing of credit
card numbers, PCI-DSS guideline 3.4.d states that application
logs should not contain credit card numbers in plaintext. We
found 4 applications writing credit card numbers to logs in
plaintext. Examples of applications persisting and logging
credit card numbers in plaintext are discussed in Section 5.5.

Finding 9: Applications are persisting card verification codes
(CVCs). As shown in Figure 3, we validated that 3/8 (37.5%)
applications were persisting card verification codes (CVCs)
that Cardpliance identified. As discussed in Section 2, PCI
DSS mandates that CVCs should never be stored even after
authorization. One application called The Toll Roads (co-
m.seta.tollroaddroid.app) has over 100k+ downloads on
Google Play is used to estimate and pay tolls when traveling.
This application was flagged by Cardpliance for outputting
the payment request along with the CVC to the device logs.
Similarly, another application for a franchise restaurant called
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Figure 3: Number of PCI DSS non-compliant applications for different tests.

Ben’s Soft Pretzels (com.rt7mobilereward.app.benspretze-
1) with over 10k+ downloads was also writing the CVC to
the device logs. Another toll application called FastToll Illi-
nois (com.pragmistic.fasttoll) is used to pay tolls acquired
within Illinois and has over 10k+ downloads. Cardpliance
identified that this application was persisting the CVC in the
shared preferences of the application.

Finding 10: Applications are not masking credit card num-
bers when displaying them in the user interface. Figure 3
shows that Cardpliance identified that 8 applications were
displaying credit card numbers without partial masking. After
validation, we verified that that 2 (25%) applications were
not partially masking credit card numbers and violating PCI
DSS requirements. An application called ConnectNetwork
by GTL (net.gtl.mobile_app) has over IM+ downloads and
allows friends and family members to send messages and call
people incarcerated within a prison. This application takes the
user’s credit card number as input in one UI widget and then
displays it in another UI widget for validation without par-
tially masking the credit card number. Section 5.5 discusses
the other application in detail. Other than directly violating
PCI DSS compliance, all of these applications are putting
users at risk of financial loss due to potential shoulder surfing
including vulnerable population groups of users such as those
using the ConnectNetwork by GTL application.

5.5 Case Studies

In this section, we discuss two interesting case studies that
demonstrate how applications are potentially mishandling
credit card information and thus violating PCI-DSS.

Case Study 1: A credit card reader application is mishan-
dling hundreds-of-thousands of customer’s credit card
numbers: Credit Card Reader (com.ics.creditcardreader)
is a popular Android application from Google Play store with
500k+ downloads. This application functions similarly to
point-of-sale machines and allows the user to accept physical
payments from customers. Cardpliance identified that this ap-
plication was persisting credit card numbers without hashing
or encrypting the information. A snippet of the source code
for this application is shown in Listing 1. As shown in line
23, the application is obtaining the user’s credit card number
from the EditText widget in the user interface and directly
logging it to LogCat.

10

@Override // android.view.View\$OnClickListener
public void onClick (View v) {
switch (v. getld () {
case 0x7F060002: { // id:action_next
Intent i = new Intent(this, TipActivity.class):
if(this.cc_sales_tax .isChecked()) {
i.putExtra("sale_amount", String.format("%.2f", Double.valueOf
(Double. valueOf (this.sale_amt).doubleValue () + Double.valueOf(this.
sale_amt).doubleValue () * this.sale_tax_per / 100))):
}
else {
i.putExtra("sale_amount”, this.sale_amt);:

}

i.putExtra("cc_no", this.cc_no.getText().toString());
i.putExtra("cc_exp", this.cc_exp.getText().toString()):
i.putExtra("cc_cvv2", this.cc_cvv2.getText().toString ()):
i.putExtra("cc_zip", this.cc_zip.getText().toString());
i.putExtra("cc_st_add", this.cc_st_add.getText().toString());
this.startActivity (i);
break;
)
)
Log.d("CCR — Payment", this.cc_no.getText().toString()):

}

\vspace{—3em}

Listing 1: Code Snippet of Credit Card Reader logging
customer’s credit card number

Note that this scenario is substantially worse than other
applications logging payment information, as it is exposing
credit card numbers of unsuspecting customers. As the appli-
cation has over 500k+ downloads and merchants may handle a
wide range of customers, the amount of customers impacted is
ultimately unbounded but likely in the hundreds-of-thousands.
As discussed in Finding 8, this practice violates PCI-DSS
guideline 3.4.d. Further, logging the credit card number also
introduces additional risks of fraud. For example, if an adver-
sary obtains physical access to the device, they can download
all of the customers’ credit card numbers in plaintext. In
addition, if the user’s device is compromised, a malicious
application with escalated privileges could also potentially
read all of the customers’ credit card numbers in plaintext.
We recommend developers completely avoid writing credit
card numbers to logging mechanisms.

Case Study 2: An application for placing online orders at
a restaurant franchise is persisting credit card numbers
in plaintext along with CVCs: A franchise restaurant called
Ben’s Soft Pretzels has an application on Google Play (com-
.rt7mobilereward.app.benspretzel) with over 10K+ down-
loads. Based on the developer identifier and website on
Google Play, the development of the application appears to
have been outsourced to a company called RT7 Incorporated.
The application allows users to place online orders from the
restaurant and it accepts credit card payments via the appli-
cation. Cardpliance identified that this app was persisting
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private SecretKeySpec setthekey () {
SecretKeySpec vO_1;
try {
SecureRandom v0 = SecureRandom. getInstance ("SHAIPRNG") ;
v0.setSeed (CreditCardEnterPage . userld.concat(CreditCardEnterPage .
userCardNumber) . getBytes () )
KeyGenerator vl = KeyGenerator. getInstance ("AES");
vl.init(0x80, v0);
vO_1 = new SecretKeySpec(vl.generateKey ().getEncoded (), "AES"):
}
catch (Exception unused_ex) {
Log.e("AES Error", "AES secret key spec error");
vO_1 = null;
}
if (vO_1 != null) {
String v1_1 = Base64.encodeToString (vO_1.getEncoded(), 0);
SharedPreferences. Editor v2 = PreferenceManager.
getDefaultSharedPreferences (this.getApplicationContext()).edit ():
v2.putString ("GetDataPoss".concat(CreditCardEnterPage . userld).concat
(CreditCardEnterPage .userCardNumber), vI_1);
Log.d("ToChangedStores", vI_1);
v2.apply () ;
}

return vO0_1;

}

Listing 2: Code Snippet of Ben’s Soft Pretzels app insecurely
generating and handlig encryption key.

credit card numbers without hashing or encrypting, persisting
CVCs, and not masking credit card numbers when displaying.

Our validation of the application uncovered several con-
cerning problems. In particular, we found that they were
attempting to encrypt the credit card number before storing
to sharedpreferences. However, the key in the key-value
pair used to store the encrypted credit card number was the
concatenation of a constant string and the user’s credit card
number and username. Therefore, the credit card number is
still being persisted to disk in plaintext. Further, as shown in
Listing 2, they use the bytes from the username and credit
card number to seed the random number generator for gen-
erating the key. This encryption key is also written to the
logs and sharedPreferences as a value under a key that con-
tains both the card number and username. In addition, we
found that when the user clicks on the pay button, the credit
card number and CVC are both logged. If any of the fields
that the user entered are empty when the button is clicked,
the remaining payment information is also logged (e.g., ex-
piration date, name, address, and zip code). Moreover, in
the CreditCardSaved2Page Activity, the application saves the
credit card number in plaintext and CVC code to Sharedp-
references as values under the keys “CardNumTemp” and
“CardCvcTemp,” respectively. If the user traverses back to the
page, both the credit card number and CVC are fetched from
SharedPreferences and repopulated into the text fields. Note
that re-displaying credit card numbers without masking is a
violation of PCI DSS. In Section 6, we provide recommen-
dations on how developers can securely handle credit card
numbers and CVCs and generate and protect encryption keys.

5.6 Disclosure of Findings

Cardpliance identified 15 PCI DSS violations in 6 applica-
tions from Google Play Store which is enlisted in Table 3.
For each of these applications, we tried to reach out to the de-

velopers through their email addresses mentioned in Google
Play. All of the emails were successfully delivered to the cor-
responding email addresses enlisted in Google Play. In each
email, we mentioned the application name, package name,
timeline and the PCI DSS violations. For each PCI DSS vio-
lation, we reported why it was a violation with reference to
the PCI DSS document and the source where the violation
occurred.

As of 75 days after disclosure, only one developer re-
sponded to our message. A 16.6% response rate is not un-
expected considering the fact that responding could raise li-
ability concerns. The responding developer agreed with all
but one of the reported vulnerabilities, promising to fix them.
We asked for clarification as to why the last issue was not
a vulnerability, but did not receive a reply. At the time of
camera-ready preparation, we have not seen an updated ver-
sion of the application in Google Play.

5.7 Threats to validity

The PCI DSS standard is a human-readable document and
does not provide precise requirements. Furthermore, the
standard applies to a wide variety of payment technology,
and it is not specific to mobile applications collecting credit
card information from users. Sections 2 and 4 describe our
interpretation of PCI DSS into a precise static analysis task.

False Negatives: Due to the time needed for static program
analysis, Cardpliance uses a lightweight filter based on credit
card related keywords. Excluding applications during the
filtering phase may result in false negatives. While we be-
lieve our keyword list is sufficiently comprehensive, it only
contains keywords for the English language. Since a keyword
search is also used by Test T3 to identify payment Uls, an
incomplete keyword list may also result in false negatives for
Test T3. Additional false negatives may occur when applica-
tions request user input through WebViews or use graphical
icons to indicate the entry of a credit card number. Card-
pliance is also reliant on UiRef [8] to identify taint sources.
UiRef does not handle dynamically generated user interfaces.

Static program analysis tools such as Amandroid [19] are
neither sound or complete. While any static analysis can be
evaded with sufficient effort, we believe that most legitimate
applications have little incentive to violate PCI compliance.
We conservatively constructed our rules to mitigate false neg-
atives and created test applications to thoroughly validate the
logic for each test. Of note, Cardpliance detected when our
test applications sent data over HTTP and sent an unprotected
PAN through Android’s SMS API or implicit intent, neither
of which were observed in real applications.

Our SSL vulnerability study was limited to poor certificate
validation, which is a common issue for Android applications.
While we did not identify any http:// URLs, this may have
resulted from limitations in static analysis (e.g., string values
not in the code). Our heuristics in Test T4 also did not consider



the cryptographic keys or cipher suites when determining if
data is safely obfuscated before writing to persistent storage.

In Test T6, we assume explicit intents are used for ICC
within an application. This assumption may introduce false
negatives if applications use explicit intents to invoke com-
ponents in external applications. However, doing so would
require detailed knowledge of the external application’s APIs,
which may change in subsequent versions. Therefore, we
expect it will only occur in rare circumstances.

False Positives: We used manual validation to eliminate false
positives in our reported findings. False positives were ob-
served in several situations. First, UiRef caused two false pos-
itives for Test T1 when determining Ul input semantics (i.e.,
email address and card expiry). Second, a significant cause of
false positives (particularly in tests T1 and T4) was tainting
the context object in the findvViewById (context,id) source.
This context variable is a singleton for the entire Activity.
When this common variable is tainted, the taint propagates to
unrelated code where the context object is used, causing false
positives. Third, several false positives in Test T5 resulted
from the context-insensitive identification of vulnerable SSL
libraries that were more generic rather than being specific to
payment credentials. Fourth, false positives resulted from Test
T3’s lightweight heuristic for masking, because identifying
user input from the network is difficult to perform statically.
Finally, Test T6 assumes that implicit intents are only used for
ICC between applications. Therefore, Test T6 may produce
false positives if an application invokes its own components
using implicit intents. However, we did not encounter such
false positives in our study.

6 Recommendations for Developers

PCI DSS v3.2.1 contains 139 pages of requirements, many
of which are not relevant to mobile applications. This section
seeks to provide a consolidated list of “best practice” recom-
mendations for developers building Android applications that
ask the user to enter a credit card number.

1. Delegate responsibility of payment processing to estab-
lished third-party payment providers. Where possible,
we recommend developers consider using established
third-party payment processors like Stripe, Square, or
PayPal. By not requesting and processing payment infor-
mation, developers can delegate much of the responsi-
bility of PCI DSS compliance to the payment processor.

2. Do not write the CVC to persistent storage or log files.
PCI DSS explicitly states that Sensitive Account Data
(see Table 1) should never be written to storage. This
includes the CAV2, CVC2, CVV2, and CID values.

3. Avoid writing the credit card number to persistent stor-
age or log files. While PCI DSS does permit writing the
credit card number to storage for a short period (if en-
crypted), it is safer to not write it all. If the user needs to

save their card number, developers should consider stor-
ing it on a secure server along with the user’s account.

4. Encrypt credit card numbers with secure randomly gener-
ated keys before storing locally. If the credit card number
must be saved locally, it should be encrypted with a key
managed by Android’s Keystore. Keys hard-coded in
applications are easily discovered. Developers should
use randomly-generated keys (e.g., SecureRandom class
without a hardcoded seed) and follow PCI DSS recom-
mendations for key length and using established crypto-
graphic libraries like javax.crypto.

5. Always send payment information over a secure connec-
tion when transmitting over the network. Applications
should use HTTPS instead of HTTP when sending pay-
ment information over the network.

6. Never modify the SSLSocketFactory or TrustMan—
ager within the application code. If there is a need to
pin the SSL connection to a specific CA, use the netwo-
rkSecurityConfig option” in the application’s manifest
file. If a test server is needed during development, create
a custom certificate for the development server and add
the custom certificate to test devices. Developers should
also vet that included third-party libraries do not include
vulnerable implementations that override the default SSL
socket factory and hostname verifiers.

7. Always mask the credit card number before displaying it.
Only the first six and the last four digits may be displayed
on subsequent screens.

8. Only use explicitly-addressed Tntent messages when
sharing payment information across Android compo-
nents. Using implicit Intents addressed with action
strings may result in unintentional access by other apps.

7 Related Work

Securing payment cards has been an important question lead-
ing to seminal papers in computer security [7, 13], yet contin-
ues to remain relevant [4, 10, 13,35,36]. For example, mag-
netic stripe cards are easily cloned [4, 7], and only recently
have mechanisms to detect this attack been developed [35,36].
Instead, much of the research has examined EMV chip-based
cards, finding and mitigating vulnerabilities related to unau-
thenticated terminals [13] and pre-play attacks [10].
Payments, however, have moved to mobile devices, mak-
ing mobile app security an important question for payments.
Recent analyses [11,33] of branchless banking applications
found flaws related to misuse of cryptography, flawed au-
thentication, and SSL/TLS misconfiguration. SSL/TLS se-
curity is especially important for mobile payments, who pri-
marily rely on HTTP-based APIs. Mobile platforms do this

Shttps://developer.android.com/training/articles/
security-config
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correctly by default, yet developers frequently break certifi-
cate validation, creating the possibility for man in the mid-
dle attacks [17,18,21,31,38]. Studies of mobile payment
platforms [42] and documentation [12] in China have also
demonstrated vulnerabilities in the payment protocols. Fur-
ther studies on cryptography in Android apps have shown that
incorrect use is rampant [14,27].

Our work also builds on prior work studying information
flows in Android apps. Much of this work has built tools to
demonstrate undesired leakage of sensitive data [9, 15, 16,23].
We rely on the extensive body of literature developing static
analysis techniques for Android apps [9, 19,20,22,29, 30].

The academic work closest to ours includes UIRef [8],
which previously identified credit card collection in Android
apps, but provided no further analysis. A second study in-
vestigated the PCI DSS compliance of e-commerce websites
as well as the effectiveness of PCI scanners for the web [32].
However, our work is the first to investigate the question of
payment card handling in the context of mobile apps.

8 Conclusion

Mobile Payment applications improve the standard of trade
and commerce. Their ease and flexibility has attracted a wide
range of customers and also potential adversaries. Therefore,
vetting the security of these applications is paramount to re-
duce fraud and abuse. We designed and used Cardpliance to
study 358 popular Android applications on Google Play that
request credit card numbers. While our study demonstrates
that most of the 358 applications (98.32%) properly handle
payment data according to Cardpliance, some applications
still improperly store credit card numbers and card verification
codes. The findings from our study demonstrate a positive
landscape of PCI DSS compliance in popular Android appli-
cations on Google Play.
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